<table>
<thead>
<tr>
<th>Podcast Series</th>
<th>Reynolds Geriatrics Series • USMLE Step 2CK Prep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Episode Title & Question Number</td>
<td>“The Song of AAA,” based on Question 78 of the 2010 USMLE sample exam</td>
</tr>
<tr>
<td>Personnel</td>
<td>Hosam Attaya, Jessica Baima, Chance Witt</td>
</tr>
<tr>
<td>Recording Date</td>
<td>November 17, 2010</td>
</tr>
<tr>
<td>Episode Description</td>
<td>Question 78, page 51</td>
</tr>
</tbody>
</table>

http://download.usmle.org/2010Step2CK.pdf

One day after an emergency repair of a ruptured aortic aneurysm, a 66-year-old man has a urine output of 35 mL over a 4-hour period; a Foley catheter is still in place. He received 14 units of blood during the operation. His temperature is 37.8°C (100°F), pulse is 126/min, and blood pressure is 104/68 mm Hg.

Examination shows diffuse peripheral edema. Heart sounds are normal. The lungs are clear to auscultation. There is no jugular venous distention. The abdomen is soft. Laboratory studies show:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit</td>
<td>27%</td>
</tr>
<tr>
<td>Serum Na⁺</td>
<td>143 mEq/L</td>
</tr>
<tr>
<td>Serum K⁺</td>
<td>5.0 mEq/L</td>
</tr>
<tr>
<td>Urine Na⁺</td>
<td>6 mEq/L</td>
</tr>
</tbody>
</table>

Which of the following is the most likely cause of the oliguria?

(A) Heart failure
(B) Hypovolemia
(C) Occluded Foley catheter
(D) Renal artery thrombosis
(E) Transfusion reaction
Learning Objectives

The listener should be able to:

- Define oliguria
- Identify the clinical consequences of hypovolemia
- Recognize appropriate lab values of different types of renal failure
- Differentiate common post surgical complications

Key Teaching Points

1. Oliguria is urine output generally below 300-500ml/day. Anuria is failure of the kidneys to produce urine, clinically classified as urine production below 50ml/day.

2. Hypovolemia and renal artery thrombosis can lead to several different bodily responses including activation of the renin-angiotensin-aldosterone system.

3. Pre-renal azotemia values: BUN:Cr 20:1, fractional excretion of sodium of <1% (FeNa is a measure of sodium in the urine compared to sodium in the blood (UNa x PCr) / (UCr x PNa) x100). Urine sodium should be <20, urine osmolality > 500. The kidney is working as hard as possible to retain sodium in order to expand plasma volume.

4. Post-renal azotemia: BUN:Cr 10-15:1, urine Na > 40, FeNa >1, urine osmolality <350. Consequent hydronephrosis and urinary retention causes a reduced renal blood flow causing an increased pressure within the renal collecting system.

Comments

References

