This PowerPoint file is a supplement to the video presentation. Some of the educational content of this program is not available solely through the PowerPoint file. Participants should use all materials to enhance the value of this continuing education program.

Anatomy and Radiographic Positioning Terminology
Clinton Bishop, RT(R), BSRS
Clinical Coordinator
Radiologic Technology Program
South Plains College
Levelland, Texas
Radiographers must possess a thorough knowledge of anatomy and medical terminology

General Anatomy

- Definitions of terms
- Body planes
- Body cavities
- Divisions of the abdomen
- Surface landmarks
- Body habitus

Definitions of Terms

- Anatomy
 - the term applied to the science of the structure of the body
- Physiology
 - the study of the function of the body organs
- Osteology
 - the detailed study of the body of knowledge relating to the bones of the body
- Radiographers must have a solid understanding of all body systems and their functions
- Radiographers must also know the surface landmarks used to locate different body parts
- Radiographers must be able to visualize the skeleton within
Definitions of Terms

• Anatomy
 – the term applied to the science of the structure of the body
• Physiology
 – the study of the function of the body organs
• Osteology
 – the detailed study of the body of knowledge relating to the bones of the body
• Radiographers must have a solid understanding of all body systems and their functions
• Radiographers must also know the surface landmarks used to locate different body parts
• Radiographers must be able to visualize the skeleton within

Body Planes

• Imaginary planes that subdivide the body in reference to anatomic position
• Planes “slice” the body in all directions at designated levels
• Fundamental planes
 – sagittal: left and right parts
 – coronal: anterior/posterior parts
 – horizontal: superior/inferior parts
 – oblique: any other angle
• Sagittal planes divide the body into right and left segments, passing vertically from front to back
• Midsagittal plane (MSP) is a specific sagittal plane that passes through midline and divides the body into equal right and left halves
• Coronal planes pass through the body vertically from side to side, dividing the body into anterior and posterior parts
• Midcoronal plane (MCP), also called midaxillary plane, is the specific plane that passes through midline and divides the body into equal anterior and posterior halves
• Horizontal planes pass crosswise through the body or body part at right angles to the longitudinal axis
 – positioned at right angle to sagittal and coronal planes
 – divides the body into superior and inferior portions
 – also called transverse, axial, or cross-sectional planes
• Oblique planes pass through a body part at any angle between the previous three planes
Body Planes

- Special planes are localized to specific parts or areas of the body
 - interiliac plane transects the body at the pelvis at the top of the iliac crests (level of L4)
 - occlusal plane formed by the biting surfaces of the upper and lower teeth with the jaw closed

Body Cavities

- Two great cavities
 - thoracic cavity
 - abdominal cavity
- Abdominal cavity has no lower partition, but the lower portion is called the pelvic cavity
- Often referred to as the abdominopelvic cavity
- Thoracic cavity contains:
 - pleural membranes
 - lungs
 - trachea
 - esophagus
 - pericardium
 - heart and great vessels
Body Cavities

- Abdominal cavity contains:
 - peritoneum
 - liver
 - gallbladder
 - pancreas
 - spleen
 - stomach
 - intestines
 - kidneys
 - uterus
 - major blood vessels

- Pelvic portion contains:
 - rectum
 - urinary bladder
 - part of the reproductive system

Divisions of the Abdomen

- Bordered superiorly by diaphragm
- Bordered inferiorly by superior pelvic aperture (pelvic inlet)
- Abdomen divided in two methods:
 - quadrants
 - regions
- Quadrants are useful for describing the location of various abdominal organs
- Four quadrants
 - right upper quadrant (RUQ)
 - right lower quadrant (RLQ)
 - left upper quadrant (LUQ)
 - left lower quadrant (LLQ)
- Abdomen divided into nine regions by four planes, two horizontal, and two vertical
- Not used as often as quadrants
Divisions of the Abdomen

- Superior regions
 - right hypochondrium
 - epigastrium
 - left hypochondrium
- Middle regions
 - right lateral
 - umbilical
 - left lateral
- Inferior regions
 - right inguinal
 - hypogastrium
 - left inguinal

Surface Landmarks

- Most anatomic structures cannot be seen or palpated
- To accurately position, radiographers rely on palpable external landmarks to locate unseen anatomy
- Practice is needed to use surface landmarks accurately
- Glabella and glabellomeatal line (GML)
- Outer canthus and orbitomeatal line (OML)
- Infraorbital margin and infraorbitomeatal line (IOML)
- Acanthion and acanthiomeatal line (AML)
- Mental point and mentomeatal line (MML)
- Cervical area
 - mastoid tip: C1
 - gonion (angle of mandible): C2, C3
 - hyoid bone: C3, C4
 - thyroid cartilage: C5
 - vertebra prominens: C7, T1
Surface Landmarks

- **Thoracic area**
 - 2” above jugular notch: T1
 - jugular notch: T2,3
 - sternal angle: T4,5
 - inferior angles of scapulae: T7
 - xiphoid process: T9,10

- **Lumbar and pelvic area**
 - inferior costal margin: L2,3
 - iliac crests: L4,5
 - anterior/superior iliac spine (ASIS): S1,2
 - pubic symphysis, greater trochanter: coccyx

Body Habitus

- Defined as the common variations in the shape of the human body
- Important in radiography because habitus determines size, shape, and position of organs of the thoracic and abdominal cavities
- Organs affected by body habitus
 - heart
 - lungs
 - diaphragm
 - stomach
 - colon
 - gallbladder
- Four major types of body habitus
 - sthenic
 - hyposthenic
 - asthenic
 - hypersthenic
- Sthenic and hyposthenic are considered average
- Hypersthenic and asthenic are the extremes
Body Habitus

- Sthenic body habitus
 - 50% of population
 - heart: transverse
 - lungs: moderate length
 - diaphragm: moderately high
 - stomach: high, upper left
 - colon: slight dip in transverse colon
 - gallbladder: centered on right side
 - moderately heavy build with long abdomen, thorax is short, broad, and deep, small pelvis

- Hyposthenic body habitus
 - 35% of population, hard to classify
 - heart: vertical and transverse
 - lungs: moderate length
 - diaphragm: high
 - stomach: centered left
 - colon: dip in transverse colon
 - gallbladder: lower right side, towards midline
 - moderate build with medium-length abdomen, thorax and pelvis are moderate

- Asthenic body habitus
 - 10% of population
 - heart: vertical and midline
 - lungs: long, apices above clavicle, broad base
 - diaphragm: low
 - stomach: low and medial
 - colon: low and folds on itself
 - gallbladder: lower right side, towards midline
 - frail build with short abdomen, thorax is long and shallow, wide pelvis

- Hypersthenic body habitus
 - 5% of population
 - heart: near transverse
 - lungs: short, apices near clavicle
 - diaphragm: high
 - stomach: high, transverse, midline
 - colon: around periphery of abdomen
 - gallbladder: high right side, laterally
 - massive build with long abdomen, thorax is short, broad, and deep, narrow pelvis
Osteology

• Skeletal divisions
• General bone features
• Bone development
• Classification of bones

Bone Functions

• Attachment for muscles
• Mechanical basis for movement
• Protection of internal organs
• Support frame for body
• Storage for calcium, phosphorus, and other salts
• Production of red and white blood cells

Skeletal Divisions

• Total of 206 bones in the body
• Divided into two main groups
 — axial skeleton: 80 bones
 — appendicular skeleton: 126 bones
• Axial skeleton supports and protects the head and trunk
 — 80 bones
 • skull
 • neck
 • thorax
 • vertebral column
• Appendicular skeleton provides means for movement
 — 126 bones
 • shoulder girdle
 • upper limbs
 • lower limbs
 • pelvic girdle
General Bone Features

- Compact bone
 - strong, dense outer layer
 - provides protection and gives support
- Spongy bone
 - inner, less dense layer
 - contains a spiculated network called trabeculae
 - trabeculae filled with red and yellow marrow
- Red marrow produces red and white blood cells
- Yellow marrow stores fat cells
- Long bones have medullary cavity
 - central cavity of long bones
 - contains trabeculae filled with yellow marrow
 - red marrow found in ends of long bones
- Periosteum
 - tough, fibrous connective tissue that covers bone, except at articular ends
- Endosteum
 - lines marrow cavity
- Bones are live organs that require a vast blood supply
- These vessels come and go through foramina
- The nutrient foramina is near the center of all long bones and supplies the cancellous bone with blood and nutrients

Bone Development

- Ossification is the term that applies to the development and formation of bones
- Begins in the second month of embryonic life
- Two processes
 - intramembranous: during fetal development
 - endochondral: during fetal development with the presence of cartilage
- Flat bones are formed by intramembranous ossification
 - skull
 - clavicles
 - mandible
 - sternum
- Short, irregular, and long bones are created by endochondral ossification
- Endochondral ossification occurs from two distinct centers of development
 - primary
 - secondary
- Primary ossification begins before birth and forms long central shaft in long bones
 - long shaft of the bone is called diaphysis
- Secondary ossification occurs after birth when separate bones begin to develop at both ends of long bones
 - ends are called epiphyses
Bone Development

- At birth, epiphyses and diaphysis are separate, as growth occurs a plate of cartilage called epiphyseal plate develops
- Fully developed by age 21
- This plate is seen in pediatrics and a common site for fractures

Classification of Bones

- Classified by shape
 - long
 - short
 - flat
 - irregular
 - Sesamoid

- Long bones
 - found only in limbs
 - consist of body and two enlarged articular ends
 - these ends contain a smooth, slippery articular surface covered with cartilage
 - may articulate with other long bones
 - examples: femur, humerus, and phalanges

Classification of Bones

- Short bones
 - consist mainly of cancellous bone with a thin outer layer of compact bone
 - vary in shape and allow minimum flexibility of motion in a short distance
 - example: carpal bones

- Flat bones
 - consist of two plates of compact bones sandwiching cancellous bone
 - middle layer of cancellous bone is called diploë
 - the flat portion provides protection and broad surfaces allow for muscle attachment
 - examples: sternum, cranium, and scapulae

- Irregular bones
 - peculiarly shaped
 - they have compact bone on the exterior and cancellous, red marrow containing bone on interior
 - their odd shape serves as attachments of muscles, tendons, ligaments, and other bones
 - examples: vertebrae, facial bones, and pelvic bones

- Sesamoid bones
 - very small and oval
 - develop inside and beside tendons
 - help decrease friction, act as a pulley system
 - protect the tendon from excessive wear
 - examples: patella (largest), others are inferior to the metatarsophalangeal joint, and the metacarpophalangeal
Arthrology

- Defined as the study of joints, or articulations, between bones
- Classified two ways
 - functional
 - structural

Functional Classification

- Three subdivisions based on mobility of joint
 - synarthroses: immoveable (sutures of the skull)
 - amphiarthroses: slightly moveable (pubic symphysis)
 - diarthroses: freely moveable (shoulder)

Structural Classification

- Three distinct groups based on connective tissues
 - fibrous
 - cartilaginous
 - synovial
- 11 specific types of joints fall within the above broad categories

Fibrous Joints

- Do not have a joint cavity (skull sutures)
- United by various fibrous and connective tissues and ligaments
- Strongest joints in the body
- Three types:
 - syndesmosis
 - suture
 - gomphosis
- Syndesmosis
 - immoveable or very slightly moveable
 - united by fibrous sheets
 - example: inferior tibiofibular joint
- Suture
 - immoveable joint only in the skull
- Gomphosis
 - immoveable joint only in roots of teeth
Cartilaginous Joints

- Do not have a joint cavity
- Virtually immovable
- Two types:
 - symphysis
 - synchondrosis

- Symphysis
 - slightly moveable joint
 - separated by a pad of fibrocartilage
 - designed for strength and shock absorbency
 - example: pubic symphysis

- Synchondrosis
 - immovable joint
 - united by rigid cartilage
 - example: epiphyseal plate

Synovial Joints

- Permit wide range of motion; freely moveable
- Complex joints
- Enclosed by articular capsule
- Many have accessory soft tissues
 - meniscus
 - bursae
- Six types
 - gliding
 - hinge
 - pivot
 - ellipsoid
 - saddle
 - ball and socket
Gliding Joint

- Simplest synovial joint
- Examples: intercarpal and intertarsal joints

Hinge Joint

- Permits flexion and extension only
- Examples: elbow and knee

Pivot Joint

- Allows rotation around a single axis
- Example: atlantoaxial joint (C1-C2 joint)

Ellipsoid Joint

- Allows flexion, extension, abduction, adduction, and circumduction
- Example: radiocarpal (wrist) joint

Saddle Joint

- Allows movement similar to ellipsoid
- Difference is in the shape of the articular surfaces
- Example: carpometacarpal joint between trapezium and first metacarpal

Ball and Socket Joint

- Permits widest range of motion
- Examples: hip and shoulder

Bone Markings and Features

- Processes or projections
 - extend beyond or project out from the main body of a bone (mastoid process)
- Depressions
 - hollow or depressed areas
- Fractures
 - a break in bone
Processes and Projections

• Condyle
 — rounded process at an articular end
• Coracoid or coronoid (coronoid process-ulna)
 — beak-like or crown-like process
• Crest (between greater and lesser trochanter, ant. femur)
 — ridge-like process
• Epicondyle (above condyle of inferior femur)
 — projection above a condyle
• Facet (spine)
 — small, smooth-surfaced articular process
• Hamulus (pterygoid hamulus, sphenoid)
 — hook-shaped process
• Head (femoral/humeral)
 — expanded end of a long bone

Processes and Projections

• Line (opposite of crest on posterior femur)
 — linear elevation; not as prominent as a crest
• Malleolus (ankle)
 — club-shaped process
• Protuberance (occipital protuberance)
 — projecting prominence
• Spine (ASIS)
 — sharp process
• Styloid (ulnar styloid process)
 — long, pointed process
• Trochanter (greater trochanter)
 — either of the two large, rounded, and elevated processes of the proximal femur
• Tubercle (greater tubercle)
 — small, rounded, and elevated process
• Tuberosity (tibial tuberosity)
 — large, rounded, and elevated process
Depressions

- Fissure (superior orbital fissure, sphenoid, and ethmoid)
 - cleft or deep groove
- Foramen (optic foramen-sphenoid)
 - hole in a bone for transmission of vessels and nerves
- Fossa (coronoid fossa)
 - pit, fovea, or hollow space
- Groove (bicipital groove)
 - shallow linear channel
- Meatus (EAM)
 - tube-like passageway
- Notch (trochlear notch)
 - indentation in the border of a bone
- Sinus (paranasal)
 - recess, groove, cavity, or hollow space
- Sulcus (sulci of the brain)
 - furrow or trench

Fractures

- Closed: does not break through skin
- Open: projects through skin
- Nondisplaced: retains normal alignment
- Displaced: not in alignment
- Common classifications
 - compression (vertebrae)
 - compound (open)
 - simple (just a break)
 - greenstick (not complete)
- Many fractures fall into more than one category
 - transverse (across)
 - spiral (around)
 - comminuted (pieces)
 - impacted (upon itself)
Anatomic Relationship

• Anatomic relationship terms (must be in anatomical position)
 — anterior (ventral)
 • forward or front part of the body or of a part
 — posterior (dorsal)
 • back part of body or part
 — caudad
 • parts away from the head of the body
 — cephalad
 • parts toward the head

Central Ray (CR)

• This is the principal x-ray beam emitting from the x-ray tube
• The CR is nearly always centered to the image receptor (IR)

Anatomic Relationship Terms

• Superior
 — nearer the head or situated above
• Inferior
 — nearer the feet or situated below
• Central
 — mid area or main part of an organ
• Peripheral
 — at or near the surface, edge, or outside of another body part
• Medial
 — toward the median plane of the body or toward the middle of a body part
• Lateral
 — away from the median plane or away from the middle of a part
• Superficial
 — near the skin or surface
• Deep
 — far from the surface
Anatomic Relationship Terms

• Distal
 — farthest from the point of attachment or origin
• Proximal
 — nearer to the point of attachment or origin
• External
 — outside the body or part
• Internal
 — inside the body or part
• Parietal
 — the wall or lining of a body cavity
• Visceral
 — the covering of an organ
• Ipsilateral
 — parts on the same side of the body
• Contralateral
 — parts on the opposite side of the body
• Palmar
 — palm of the hand
• Plantar
 — sole of the foot
• Dorsum
 — anterior, or top, of the foot or the back of the hand

Positioning Terminology

• Projection
 — defined as the path of the CR as it exits the x-ray tube, passing through the patient to the IR
 — identified by the entrance and exit points of the body in anatomical position
• Position
 — overall posture of the patient or general body position
 — also refers to the specific placement of the body or part in relation to the table or IR
• View
 — used to describe the body part as seen by the IR
 — exact opposite of projection, the preferred term in the United States
• Method
 — refers to a specific radiographic projection developed by an individual
 • Towne (PA axial), Waters (PA)
Essential Projections

- Anterior-posterior (AP)
 - CR enters the anterior surface and exits the posterior
- Posterior-anterior (PA)
 - CR enters the posterior surface and exits the anterior
- Axial
 - longitudinal angle of the CR
- Tangential
 - CR directed along the outer margin of a curved body surface
- Lateral
 - CR enters one side of the body, passing transversely along the coronal plane
- Oblique
 - CR enters from side angle
 - entrance and exit surfaces still specified (e.g., AP oblique)

Positions

- General body positions
 - upright: erect or vertical
 - seated: upright, but sitting on a stool
 - recumbent: lying down in any position
 - supine: lying on the back
 - prone: lying face down
 - Trendelenburg’s position: supine with the head lower than the feet
 - Fowler’s position: supine with the head elevated
 - Sims’ position: recumbent with patient lying on left anterior side with left leg extended and right knee and thigh partially flexed
- Oblique position
 - body is rotated so that the coronal plane is not parallel with the table or IR
 - angle of rotation is specific for anatomy of interest
 - named according to side and surface of body closer to table or IR
- Decubitus position
 - recumbent position with a horizontal CR
 - named according to the body surface on which the patient is lying
- Lordotic position
 - upright position in which the patient is leaning backward
• Abduct or abduction
 — movement of a part away from the central axis of the body
• Adduct or adduction
 — movement of a part toward the central axis of the body
• Extension
 — straightening of a joint
• Flexion
 — bending of a joint
• Hyperextension
 — forced or excessive extension
• Hyperflexion
 — forced overflexion
• Evert/eversion
 — outward turning of the foot at the ankle
• Invert/inversion
 — inward turning of the foot at the ankle

• Pronate/pronation
 — rotation of forearm so that the palm is down
• Supinate/supination
 — rotation of forearm so that the palm is up
• Rotate/rotation
 — turning of the body or part around its axis
 — rotation of a limb is either medial (toward midline) or lateral (away from midline)
• Circumduction
 — circular movement of a limb
• Tilt
 — tipping or slanting a body part slightly
• Deviation
 — a turning away from the regular or standard course
Image Receptors

- Device that receives the energy of the x-ray beam and forms the image of the body part
- Four types:
 - cassette with film
 - image plate (computerized)
 - digital radiography
 - fluoroscopic screen
- Image receptor placement
 - longitudinal (long axis with long axis)
 - horizontal (short axis across long axis)
 - corner to corner

Quality Factors

- Know the anatomy so the exam may be accurately performed
- Density
 - optimal density must be in diagnostic range
 - correct technical factors (mA, sec, mAs)
 - amount of darkness
- Contrast
 - difference in adjacent densities (tissues)
 - shades of grey
 - controlled by kilovolt peak (kVp)
- Recorded detail
 - ability to visualize small structures
 - controlled by:
 - geometry
 - film
 - distance
 - screen
 - focal spot size
 - motion
Quality Factors

• Distortion
 – misrepresentation of the size/shape of a structure
 – may be caused by:
 • alignment
 • CR
 • anatomical part
 • IR
 • angulation
 • Magnification

• Source to image receptor distance (SID)
 – distance from the anode inside the x-ray tube to the IR
 – affects magnification (longer SID less magnification), recorded detail (longer SID better recorded detail), and patient dose
 • no less than 12”
 • 40” on most
 • 72” on some with increased object image distance (OID)

Quality Factors

• Motion
 – must communicate clearly
 – make patient comfortable
 – watch your patient
 – three types of motion
 • voluntary
 • involuntary
 • equipment

• Collimation
 – reduces patient dose
 – reduces scatter radiation
 – produces better recorded detail

• Markers
 – requirement that all radiographs contain R or L marker
 – should never obscure anatomy or patient ID
 – placed on the edge of collimation border
 – placed on lateral side
 – writing R or L on radiograph is not acceptable
Anatomy and Radiographic Positioning Terminology

If you have any questions about the program you have just watched, you may call us at: (800) 424-4888 or fax (806) 743-2233. Direct your inquiries to Customer Service. Be sure to include the program number, title and speaker.