

Objectives

- Identify goals and benefits of breast reconstruction
- Understand options available to patients
- Explain rationale for immediate

General Principles of Breast Reconstruction

The Origins of Breast Reconstruction

The Origins of Breast Reconstruction

- 1895: Czerny
- 1963: Cronin's silicone gel filled breast prosthesis
- 1971 Snyderman's immediate silicone prosthesis reconstruction
- 1970's: Latissimus dorsi reconstruction
- 1982: Radovan's skin expansion technique
- 1982: Hartrampf refines TRAM flap

Origins of Breast Reconstruction

- Original goals
 - To improve appearance in clothes
- Current goals
 - To match the remaining breast in dimension, position, contour, and appearance

Why Offer Breast Reconstruction

- Restores normal anatomy
- Decreased symptoms of depression
- Alleviates feeling of being "deformed"
- Maintains feeling of sexual attractiveness
- Supports sense of femininity
- High Satisfaction

Patient Selection

- Patient wishes
- Body habitus and proportions
 - Breast shape, obesity, abdominal scars
- Small vessel disease
 - Tobacco use, diabetes
- Psychosocial status
- Systemic medical diseases
- Radiation therapy

Advancements

- Evolution of mastectomy technique
 - Skin sparing
 - Nipple sparing
- Skin sparing techniques allow plastic surgeon to match opposite breast without reduction of normal breast

Skin-Sparing Technique

- Periareolar approach
- Favorable incision orientation
 - Tissue flaps
- Gentle tissue handling
- Preserve native skin envelope
- Preserve inframammary fold

What is the difference?

- Skin sparing vs. Non-skin sparing
- At 5 years, local recurrence and distant metastasis lower in skin sparing group
- Skin sparing does not increase risk of local or systemic disease
- Subsequent study by Carlson et al. confirms no increased risk of local recurrence

Indications and Timing – Immediate Reconstruction

- There are few reasons to relay reconstruction in any patient who meets criteria for mastectomy
- Reduces emotional impact/postoperative depression
- Skin flaps more pliable, preservation of inframammary fold
- Has become the norm in the U.S.
- Stage I/II good candidates
 - Maybe III/IV

Indications and Timing – Delayed Reconstruction

 Radiotherapy - may produce fat necrosis and capsular contracture

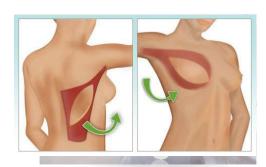
- Inflammatory breast cancer
- Flap thickness / Full thickness injury

Reconstruction after Radiation or Chemotherapy


- Wait 2-3 months after chemotherapy
 - Normalize blood counts, weight, stamina
- Wait 3-6 weeks after radiation for acute phase resolution
 - High implant/expander complication rate
 - TRAM complications increased
 - Consider delayed, bipedicled, or free tissue transfer

Immediate vs. Delayed

	Group	Immediate	Delayed
i.	TRAM	\$17,957	\$29,173
	Tissue Expansion	\$17,514	\$25,411
i.	Preop Radiation	\$19,876	\$29,687
	No Radiation	\$17,671	\$28,184


Mean corrected resource cost

Reconstructive Options

- External prosthesis
- Internal prosthesis (implant)
 - Silicone
 - Saline
- Tissue Expansion
- Latissimus dorsi myocutaneous flap
 - With or without an implant/expander

Reconstructive Options

- Transverse rectus abdominus myocutaneous flap (TRAM)
- Other Free Tissue Transfers
 - Deep Inferior Epigastric flap (DIEP)
- Nipple Areolar Reconstruction

External Prosthesis

- Low cost
- No morbidity
- "Burden and discomfort"
- Need to alter clothing

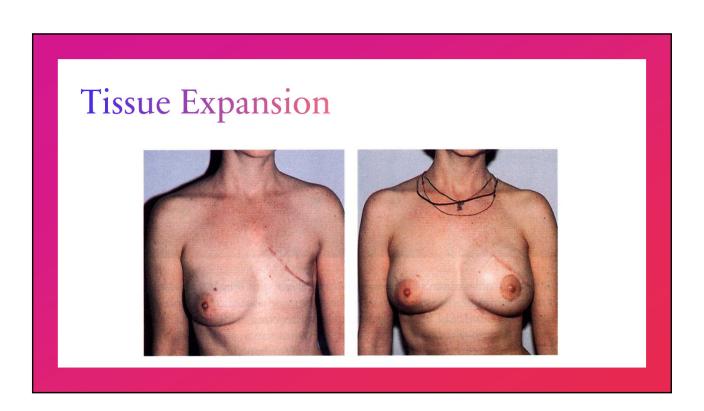
Expanders/Implants

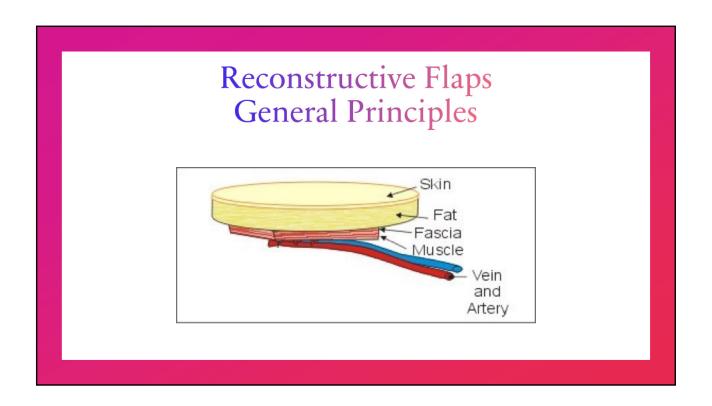
- High risk in obese patients, smokers, and history of radiation
- Advanced age and bilateral reconstruction are NOT contraindications
- Essential to isolate expander/implant from incision risk of extrusion

Expanders/Implants

- Submuscular implant placement is associated with lower capsular contracture than prepectoral placement
- Submuscular implants cause more discomfort, animation deformity, and less superior fullness
- Implants do **not** interfere with chemotherapy or block radiation doses.

Internal Prosthesis (Implant)


- Simple
- Safe
- Saline or silicone
- Minimal morbidity
- No bridges burned


- Difficulty matching opposite breast
- Capsular scarring
- Implant failure
- Results worsen over time
- Complications with radiation therapy

Tissue Expansion

- Simple
- Minimal morbidity
- Safe
- No bridges burned

- Prolonged expansion time
- Exchange expander for implant
- Capsular scarring
- Implant failure
- Results worsen over time
- Complications with radiation therapy

Autologous Tissue

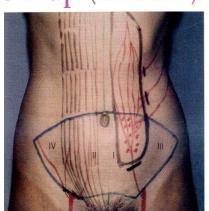
- Results improve over time
- No foreign-body reaction
- More natural result

- More complex
- Must be suitable candidate
- Potential for greater morbidity

Latissimus Flap

- First used in 1977
- Can be combined with an implant or tissue expander to help match larger or ptotic breast
- Advantages are reliable circulation and favorable geometry
- Disadvantages are large donor site scar and likelihood of persistent fluid collection at donor site

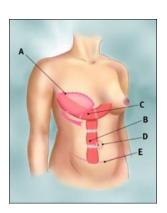
Latissimus Flap


Latissimus Flap — blood supply Poterior humanal circumflies aftery Anterior humanal dicrumflies aftery Lateral thoracci artery Lateral thoracci artery Intercodatal artery

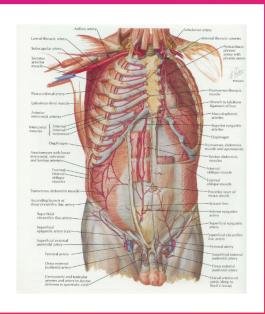
Latissimus Dorsi Myocutaneous Flap

Transverse Rectus Abdominus Musculocutaneous Flap (TRAM)

First used in 1979

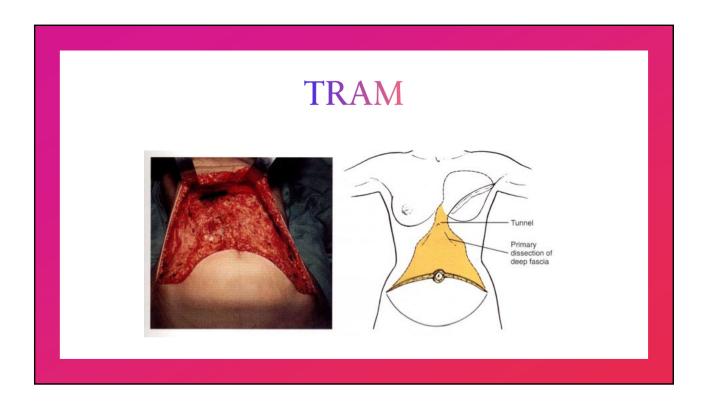

TRAM Flap

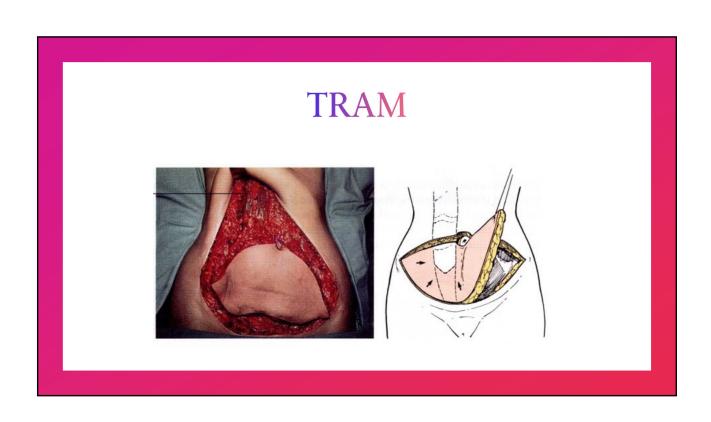
- Copious tissue
- Leave an acceptable donor scar
- Simultaneous abdominoplasty


- Protracted recovery time
- Potential for hernia from weakness of abdominal wall
- Inevitable compromise of muscle function
- Limitations imposed by previous scars

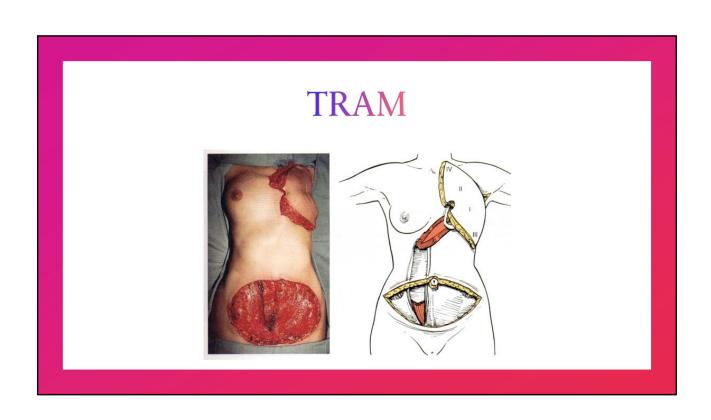
TRAM

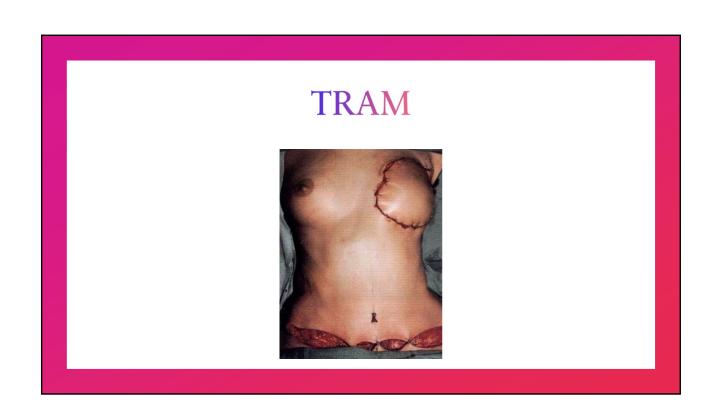
TRAM - Blood Supply

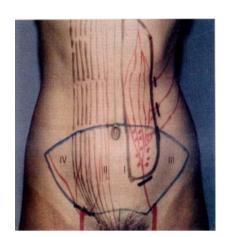



TRAM - Blood Supply

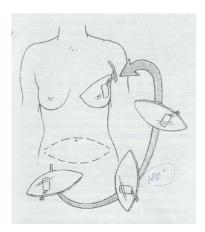
- Deep superior/inferior epigastric arteries supply the rectus muscle
- Superficial inferior epigastric arteries supply additional perforators to the overlying skin


TRAM - Blood Supply


- Zones I,II,III,IV
- Flap may be "supercharged" with microvascular anastomosis to recipient vessels in the axilla
- Most vascular flap complications are actually venous congestion, not arterial insufficiency



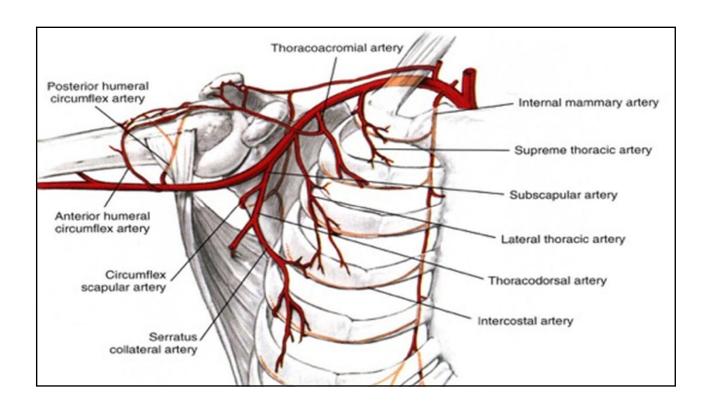
Double Pedicled TRAM


- Based on both Deep Superior epigastric arteries
- Provides more soft tissue volume
- Option for <u>high risk</u> patients or midline scar
- Abdominal wall complications
- Split for bilateral reconstructions

Absolute Contraindications to Pedicled TRAM

- COPD
- Severe Cardiovascular disease
- Uncontrolled HTN
- Morbid obesity
- IDDM
- Autoimmune disease
- Previous subcostal incision
- Previous abdominoplasty

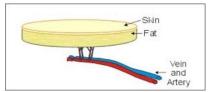
Free-tissue Transfer - TRAM

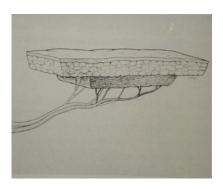


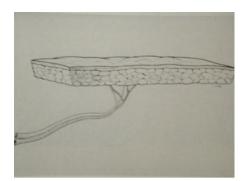
Free-tissue Transfer - TRAM

- Also first used in 1979
- In experienced hands, may be associated with less flap necrosis and flap loss with equibalent operative times and morbidity
- Benefits from a larger artery Deep inferior epigastric artery
 - Hooked into the thoracodorsal or internal mammary
 - No medial bulge in the upper abdomen.

Free-tissue Transfer - TRAM


- All four zones can be transferred reliably
- Less muscle needs to be taken, reducing the functional impairment
- Skin island can be designated lower in the abdomen
- Becoming increasingly popular


So then, What is a "DIEP" flap?!


Deep Inferior Epigastric Perforator Flap (DIEP)

- Based on 1 or more DIEA perforators
 - Deep inferior epigastric artery perforators
- Spares Rectus muscle
- Less perfusion than a TRAM
- Better aesthetic outcome

TRAM vs. DIEP

TRAM vs. DIEP Outcomes

Fat Necrosis Partial Flap Loss
TRAM 12.9% 2.2%

DIEP 62.5% 37.5%

Selective DIEP* 17.4% 8.7%

^{*}Large perforator with palpable pulse, >1 mm vein, (absence of large SIEV), <70% of flap volume required

TRAM vs. DIEP Outcomes

•	TRAM	DIEP
OR Time (hr)	8.9	6.6
- Hospital days	7	3
Costs (\$)	9,100	17,600

Paper published in 2000 **

TRAM – Delayed Technique

- Some surgeons believe in a "delayed" technique
 - Ligating inferior superficial and deep vessels, and allowing one week to pass to improve flap viability.
- Studies show improved flow, increased vessel diameter, less fluctuation in perfusion levels
- Generally reserved for smokers, obese patients, age >70, and previous radiation (high risk) because of need for second operation

Radiation and TRAM reconstructions

- TRAM reconstructions with pre or post reconstruction radiation vs. no radiation
- Radiation did not stiatistically change overall complication rate

Radiation	Fat Necrosis	Fibrosis
Pre	18%	0%
Post	16%	11%
None	10%	0%

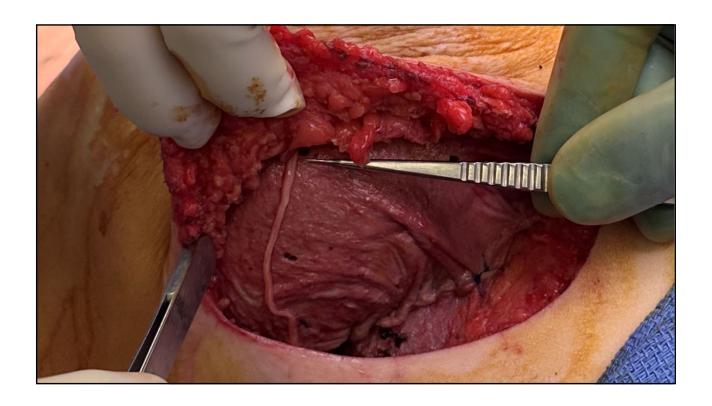
Screening After Reconstruction

- Clinical Exam
- Should be performed by a healthcare provider

The Other Breast

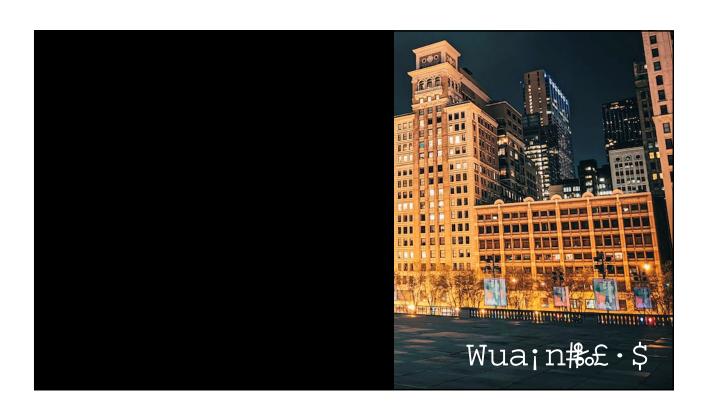
- Augmentation
- Mastopexy
- Reduction
- Prophylactic mastectomy
 - Family History
 - BRCA

Future Directions


Innervation of the Breast

- Segmental
- Derives from the dermatomes of breast development
- Central breast and nipple areolar complex
 - T3-T5 branches of the *anterolateral and anteromedial* intercostal nerves

Q nfi'n# Mfinfhfi'at&; #a; l# Unv; ; nfi'at&; # Wnju; vt·nfl



Conclusion

- Multiple options
- Skin Sparing and nipple sparing mastectomy techniques have provided huge advances to achieving current goals of reconstruction
- Future success with nerve preservation/reinnervation to the nipple and skin flap

