### Athlete's Heart

- Outline
  - Exercise-induced Cardiac Remodeling
  - Health vs. Disease
    - LV chamber enlargement
    - RV chamber enlargement
    - LV wall thickening





### Historical Overview

1899: Initial observations by Henschen and Darling

- Cardiac enlargement by physical exam

100+ years of scientific study:









## Cardiac Remodeling

#### **Hemodynamic Stress of Sport**











#### Pathophysiology of Disease











## Cardiac Remodeling: Exercise

#### **Endurance Activities (Isotonic)**





#### Sustained ↑ CO

- 4 to 5 times rest
- ↑ ↑ ↑ HR & ↑ SV
- Vasodilation

Volume Challenge

#### **Strength Activities (Isometric)**





#### Repetitive SBP

- Systolic BP > 200 mmHg
- Skeletal Muscle Contraction
- Vasoconstriction

Pressure Challenge



#### FIGURE Classification of Sports



Levine et al JACC 2015

AMERICAN COLLEGE of CARDIOLOGY



Weiner & Baggish. Prog Cardiovasc Dis 2012;54:380.



## Determinants of Myocardial Adaptation

- Sporting discipline
- Gender
  - Females < males</p>
- Ethnicity
  - † wall thickness in Afro-Caribbean descent
- Genetics / Molecular pathways
- Exercise exposure duration and "dose"



### Health vs. Disease

 Can we separate athletic remodeling from pathology?

 Yes, the majority of the time when a systematic approach is used.





## Evaluation "Tool Kit"





## LV Chamber Enlargement



Pelliccia et al. Ann Intern Med 1999;130:23.



## LV Chamber Enlargement

Table 4 Echocardiographic findings from the study population of university athletes

| Parameter                               | Male (n = 300)      |                                 | Female (n = 197)      |                                 |
|-----------------------------------------|---------------------|---------------------------------|-----------------------|---------------------------------|
|                                         | Normal<br>(n = 209) | Physiologic remodeling (n = 91) | Normal<br>(n = 178)   | Physiologic remodeling (n = 19) |
| Structural parameters                   |                     |                                 |                       |                                 |
| Interventricular septal thickness (mm)  | $9.8 \pm 0.9$       | $11.6 \pm 0.5$                  | $8.3 \pm 0.7^{\circ}$ | $10.6 \pm 0.5$                  |
| LV posterior wall thickness (mm)        | 10.0 + 1.2          | 11.8 ± 1.4                      | 8.6 ± 1.1*            | $10.7 \pm 0.7^{\dagger}$        |
| LV inner dimension at end-diastole (mm) | 51 ± 3              | 57 ± 5                          | 42 ± 4*               | 54 ± 4 <sup>†</sup>             |
| LA diameter (mm)                        | 36 ± 4              | 40 ± 4                          | 32 ± 3*               | 38 ± 4                          |
| RV end-diastolic diameter (mm)          | 30 ± 5              | 36 ± 3                          | 28 ± 4*               | 33 ± 31                         |
| Functional parameters                   |                     |                                 |                       |                                 |
| LV ejection fraction (%)                | 65 ± 7              | 58 ± 4                          | 68 ± 6                | 64 ± 6 <sup>†</sup>             |
| Transmitral E wave (cm/sec)             | 86 + 16             | 96 + 13                         | 81 + 17               | 88 + 12                         |

# 25% of US college athletes exceed gender recommended LVIDd limit



P < .05 for comparison with male athletes in the normal cardiac structure and function group.</p>

¹P < .05 for comparison with male athletes in the physiologic remodeling group.</p>

### Physiologic LV Chamber Enlargement:

- Expected with endurance training.
- Accompanied by proportionate increase in wall thickening (Eccentric LVH).
- Accompanied by normal to low normal resting LVEF (~50%).
- TDI / Strain assessment with preserved or enhanced function.
- Accompanied by "other" chamber enlargement (RV, LA).
- LVIDd "cut-offs" are not helpful.
- When in doubt, exercise testing is very useful (confirm LV augmentation and document supranormal exercise capacity).



## RV Chamber Enlargement



Figure 2 Range of values for RV inflow dimension in endurance athletes (n = 102).



Figure 3 Range of values for RV proximal outflow dimension in endurance athletes (n = 102).

Oxborough et al. J Am Soc Echocardiogr 2012;25:263.



## Physiologic RV Chamber Enlargement:

- Expected with endurance training.
- Global RV process without sacculation, aneurysmal dilation, segmental dysfunction, or fibrosis (?).
- RV dimensions "cut-offs" are not helpful.
- "Always" associated with LV remodeling (concomitant LV enlargement but no RVH).
- Accompanied by normal to low normal resting FAC / RVEF.
- TDI / Strain assessment with preserved or enhanced function.
- If in doubt, comprehensive exercise testing and rhythm monitoring.



### Thick LV Walls

#### **Adult Athletes**



Pelliccia et al. N Engl J Med 1991.

#### **Junior Athletes**



Sharma et al. J Am Coll Cardiol 2002.

Least frequent, but most problematic



### Thick LV Walls



Table 4 Echocardiographic findings from the study population of university athletes

| Parameter                               | Male (n = 300)      |                                 | Female (n = 197)    |                                    |
|-----------------------------------------|---------------------|---------------------------------|---------------------|------------------------------------|
|                                         | Normal<br>(n = 209) | Physiologic remodeling (n = 91) | Normal<br>(n = 178) | Physiologic remodeling<br>(n = 19) |
| Structural parameters                   |                     |                                 |                     |                                    |
| Interventricular septal thickness (mm)  | 9.8 ± 0.9           | 11.6 ± 0.5                      | 8.3 ± 0.7*          | $10.6 \pm 0.5^{\dagger}$           |
| LV posterior wall thickness (mm)        | 10.0 ± 1.2          | 11.8 ± 1.4                      | 8.6 ± 1.1*          | 10.7 ± 0.7 <sup>†</sup>            |
| Ly inner dimension at eno-diastole (mm) | 51 ± 3              | 57 ± 5                          | 42 ± 4              | 54 ± 4                             |
| LA diameter (mm)                        | 36 ± 4              | 40 ± 4                          | 32 ± 3*             | 38 ± 4                             |
| RV end-diastolic diameter (mm)          | $30 \pm 5$          | 36 ± 3                          | 28 ± 4*             | 33 ± 31                            |
| Functional parameters                   |                     |                                 |                     |                                    |
| LV ejection fraction (%)                | 65 ± 7              | 58 ± 4                          | 68 ± 6              | 64 ± 6 <sup>†</sup>                |
| Transmitral F wave (cm/sec)             | 86 + 16             | 96 + 13                         | 81 + 17             | 88 + 12                            |

# Not a single healthy college athlete with walls > 14 mm



<sup>\*</sup>P < .05 for comparison with male athletes in the normal cardiac structure and function group.

<sup>!</sup>P < .05 for comparison with male athletes in the physiologic remodeling group.</p>

### Physiologic Thick LV Walls:

- Physiologic concentric LVH is symmetric without regional variation.
  - Marked asymmetry is pathology until proven otherwise.
- Wall thickness "cut-offs" are VERY helpful.
- Accurate absolute thicknesses >15 mm are pathologic until proven otherwise.
- E' values may be helpful, but not diagnostic
- Exercise testing (CPET) is a useful discriminator
- Detraining may be necessary to arrive at a final diagnosis.

This is the HCM mimicker



## Other Areas of Study

- Atria
  - LA dilation: endurance > strength athletes

Iskander et al. JACC Cardiovasc Imaging, 2015.

- LA function: atrial strain and contraction
- Aorta
  - Sinus of Valsalva: 3.2 mm greater in athletes

Iskander et al. Circulation, 2013.



## **Future Directions**

- Myocardial mechanics
  - LV strain, twist (regional function)
- Cardiac MRI



La Gerche et al. *Eur Heart J.* 2012; 33:998.



## Summary









**Key Differential Diagnosis** 

Hypertrophic cardiomyopathy Hypertensive heart disease Infiltrative heart disease Valvular heart disease

#### Clinical Factors c/w of Athlete's Heart

Strength training background No subjective symptoms Benign family history Normal subjective exercise capacity

#### Echo Findings c/w Athlete's Heart

Mild symmetric LVH (walls <15 mm) Normal RV dimensions Normal / mildly enlarged LA Normal aortic valve function Normal mitral valve anatomy

#### **Additional Diagnostic Considerations**

Exercise testing (VO, assessment) 24h ambulatory 8P monitor Cardiac MRI ? Prescribed detraining

#### Dilated LV Chamber



Key Differential Diagnosis

Idiopathic dilated cardiomyopathy Toxic (ETOH, drugs) cardiomyopathy Infectious cardiomyopathy Cardiomyopathy 2\* tachyarrhythmia

#### Clinical Factors c/w of Athlete's Heart

Endurance training background No subjective symptoms Benign family history No history of prior illness / substance abuse Normal subjective exercise capacity

#### Echo Findings c/w Athlete's Heart

Concomitant RV dilation Mild LV wall thickening Supra-normal LV diastolic indices Normal / mildly enlarged LA & RA

#### **Additional Diagnostic Considerations**

Exercise testing (VO, assessment) Ambulatory rhythm monitoring Cardiac MRI





#### **Differential Diagnosis**

Arrhythmogenic RV cardiomyopathy Idiopathic dilated cardiomyopathy Pulmonary HTN / congenital heart disease Sarcoidosis Cardiomyopathy 2° tachyarrhythmia

#### Clinical Factors c/w of Athlete's Heart

Endurance training background No subjective symptoms Benign family history Normal subjective exercise capacity

#### Echo Findings c/w Athlete's Heart

Concomitant LV dilation Normal RV morphology Supra-normal LV diastolic indices Normal / mildly enlarged LA & RA Normal RV systolic pressure

#### Additional Diagnostic Considerations

Signal averaged ECG Exercise testing (VO<sub>2</sub> assessment) Ambulatory rhythm monitoring Cardiac MRI