Structural Intervention in Heart failure Ankush Lahoti, MD Structural and Interventional Cardiology TTUHSC, Lubbock ## **Topics** - TAVR - Trans catheter edge to edge repair ## Case - 78 year old gentleman with past medical history of paroxysmal atrial fibrillation on warfarin, HTN presented to hospital with complaints of shortness of breath on exertion, lower extremity edema. - On further evaluation patient was found to be anemic and echocardiogram performed showed severe aortic stenosis with LVEF of 30-35% (unknown baseline LVEF). - Anemia was corrected and patient was referred for LHC and RHC which confimed severe Aortic stenosis with multivessel CAD ## **TAVR** - Transcatheter aortic valve replacement has been commerically performed in US since 2012 - Initially was approved for prohibitive risk and with further trials TAVR is now also performed in appropriate patient with low risk - Lets dive into the stages and guidelines **Table 13. Stages of Valvular Aortic Stenosis** | Stage | Definition | Valve Anatomy | Valve
Hemodynamics | Hemodynam
ic
Consequenc
es | Symptoms | |-------|-------------------|---|---|--|----------| | A | At risk of AS | congenital valve | Aortic V _{max} <2
m/s with normal
leaflet motion | None | None | | В | Progressive
AS | Mild to moderate leaflet calcification/fibr osis of a bicuspid or trileaflet valve with some reduction in systolic motion | IIIax | diastolic
dysfunctio
n may be
present | None | | Table 13. Stages of Valvular Aortic Stenosis | | | | | | | | AMERICAN
COLLEGE #
CARDIOLOGY
FOUNDATION | |--|----------------|---|---|---|----|--|----|---| | Stage | Definitio
n | Valve Anatomy | | Valve
Hemodynamics | | emodynami
c
onsequence
s | Sy | mptoms | | C: Asy | mptomati | c Severe AS | | | | | | | | C1 | | Severe leaflet
calcification/
fibrosis or
congenital stenosis
with severely
reduced leaflet
opening | • | Aortic $V_{max} \ge 4$ m/s or mean P ≥ 40 mm Hg AVA typically is ≤ 1.0 cm ² (or AVAi 0.6 cm ² /m ²) but not required to define severe AS Very severe AS is an aortic $V_{max} \ge 5$ m/s or mean P ≥ 60 mm Hg | • | LV
diastolic
dysfunctio
n
Mild LV
hypertroph
y
Normal
LVEF | • | None Exercis e testing is reasona ble to confir m sympto m status | | C2 | Asympto | Severe leaflet | • | Aortic $V_{max} \ge 4$ | 17 | /EF <50% | No | one | | Table 13. Stages of Valvular Aortic Stenosis | | | | | | | |--|--|---|---|---|--|--| | Stage | Definiti
on | Valve
Anatomy | Valve Hemodynamics | Hemodynamic
Consequences | Symptoms | | | D: Syn | nptomatic | severe AS | | Į. | | | | D1 | Sympto
matic
severe
high-
gradient
AS | Severe leaflet
calcification/fi
brosis or
congenital
stenosis with
severely
reduced
leaflet
opening | Aortic V _{max} ≥4 m/s or mean P ≥40 mm Hg AVA typically ≤1.0 cm² (or AVAi ≤ 0.6 cm²/m²) but may be larger with mixed AS/AR | LV diastolic dysfunction LV hypertroph y Pulmonary hypertensio n may be present | Exertional dyspnea, decreased exercise tolerance, or HF Exertional angina Exertional syncope or presyncope | | | D2 | Sympto
matic
severe
low-
flow,
low-
gradient | Severe leaflet
calcification/fi
brosis with
severely
reduced
leaflet motion | AVA ≤1.0 cm² with resting aortic V _{max} <4 m/s or mean P <40 mm Hg Dobutamine stress echocardiography shows AVA <1.0 | LV diastolic dysfunction LV hypertroph y LVEF | HFAnginaSyncope or presyncope | | | Table 13. Stages of Valvular Aortic Stenosis | | | | | | | | |--|-------------------------|--|-----------------------|---|---|----|--| | Stage | Definiti
on | Valve
Anatomy | Valve
Hemodynamics | 1 | emodynamic
onsequences | Sy | mptoms | | D: Syı | mptomati | ic severe AS | | | | | | | D3 | matic
severe
low- | Severe leaflet
calcification/fi
brosis with
severely
reduced
leaflet motion | | • | Increased LV relative wall thickness Small LV chamber with low stroke volume Restrictive diastolic filling LVEF | • | HF
Angina
Syncope or
presyncope | | | Favors SAVR | Favors TAVI | Favors Palliation | |--------------------------------|--|--|---| | Age/life
expectancy* | Younger age/longer life expectancy | Older age/fewer
expected remaining
years of life | Limited life
expectancy | | Valve anatomy | BAV Subaortic (LV outflow tract) calcification Rheumatic valve disease Small or large aortic annulus† | Calcific AS of a
trileaflet valve | | | Prosthetic valve
preference | Mechanical or surgical
bioprosthetic valve
preferred Concern for patient—
prosthesis mismatch
(annular enlargement
might be considered) | Bioprosthetic valve preferred Favorable ratio of life expectancy to valve durability TAVI provides larger valve area than same size SAVR | | | Concurrent cardiac conditions | Aortic dilation‡ Severe primary MR Severe CAD requiring bypass grafting Septal hypertrophy requiring myectomy | Severe calcification of
the ascending aorta
("porcelain" aorta) | Irreversible severe LV systolic dysfunction Severe MR attributable to annular | | | Favors SAVR | Favors TAVI | Favors Palliation | |---|---|---|--| | Noncardiac
conditions | | Severe lung, liver, or renal disease Mobility issues (high procedural risk with sternotomy) | Symptoms likely attributable to noncardiac conditions Severe dementia Moderate to severe involvement of ≥2 other organ systems | | Frailty | Not frail or few frailty
measures | Frailty likely to
improve after TAVI | Severe frailty unlikely
to improve after TAVI | | Estimated procedural or surgical risk of SAVR or TAVI | SAVR risk low TAVI risk high | TAVI risk low to
medium SAVR risk high to
prohibitive | • Prohibitive SAVR risk (>15%) or post-TAVI life expectancy <1 y | | Procedure-
specific
impediments | Valve anatomy,
annular size, or low
coronary ostial height
precludes TAVI Vascular access does
not allow transfemoral
TAVI | Previous cardiac surgery with at-risk coronary grafts Previous chest irradiation | Valve anatomy, annular
size, or coronary ostial
height precludes TAVI Vascular access does
not allow transfemoral
TAVI | | | Favors SAVR | | Favors TAVI | | Favors Palliation | |---|---|---|--|---|--| | Goals of Care
and patient
preferences
and values | Less uncertainty about valve durability Avoid repeat intervention Lower risk of permanent pacer Life prolongation Symptom relief Improved long-term exercise capacity and QOL Avoid vascular complications Accepts longer hospital stay, pain in recovery period | • | Accepts uncertainty about valve durability and possible repeat intervention Higher risk of permanent pacer Life prolongation Symptom relief Improved exercise capacity and QOL Prefers shorter hospital stay, less postprocedural pain | • | Life prolongation not an important goal Avoid futile or unnecessary diagnostic or therapeutic procedures Avoid procedural stroke risk Avoid possibility of cardiac pacer | # Transcatheter edge to edge repair ### **Mitral Regurgitation** **Primary** Structural abnormality - Leaflets - Subvalvular aparatus - Chordae and papillary muscles #### Secondary Structurally normal valve - Incomplete coaptation - LV failure (ischemic or not) - Annular dilatation related to A Fib | APT vs. MITRA-FR: N | AR, LV Volume | es and Fur | |-------------------------|----------------------|---------------------| | | COAPT (n=614) | MITRA-FR
(n=304) | | EROA, mm² (mean ± SD) | 41 ± 15 | 31 ± 10 | | - <30 mm² | 14% (80/591) | 52% (157/301) | | - 30 – 40 mm² | 46% (270/591) | 32% (95/301) | | - >40 mm² | 41% (241/591) | 16% (49/301) | | LVEF, % (mean ± SD) | 31 ± 9 | 33 ± 7 | | LVEDV, mL/m² (mean ± SD | 0) 101 ± 34 | 135 ± 35 | ## Difference between COAPT and mitra FR | | COAPT | Mitral FR | |--------------------------------|----------|-----------| | EROA mm2 | 41+- 15 | 31+- 10 | | LVEDV ml/m2 | 101+- 34 | 135+- 35 | | Residual MR
Acute MR >3+ | 5% | 9% | | At 12 months
Residual MR>3+ | 5% | 17% | | COR | LOE | Recommendations | |---------------|---------|---| | 2a | B-R | 1. In patients with chronic severe secondary MR related to LV systolic dysfunction (LVEF <50%) who have persistent symptoms (NYHA class II, III, or IV) while on optimal GDMT for HF (Stage D), transcatheter edge-to-edge mitral valve repair (TEER) is reasonable in patients with appropriate anatomy as defined on TEE and with LVEF between 20% and 50%, LVESD ≤70 mm, and pulmonary artery systolic pressure ≤70 mm Hg. | | Otto et al JA | CC 2021 | |