

Circulation Volume 140, Issue 2, 9 July 2019; Pages e125-e151 https://doi.org/10.1161/CIR.000000000000665

ACC/AHA/HRS GUIDELINE

2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons

Craig T. January, MD, PhD, FACC, Chair, L. Samuel Wann, MD, MACC, FAHA, Vice Chair, Hugh Calkins, MD, FACC, FAHA, FHRS, Lin Y. Chen, MD, MS, FACC, FAHA, FHRS, Joaquin E. Cigarroa, MD, FACC, Joseph C. Cleveland Jr, MD, FACC, Patrick T. Ellinor, MD, PhD, Michael D. Ezekowitz, MBChB, DPhil, FACC, FAHA, Michael E. Field, MD, FACC, FAHA, FHRS, Karen L. Furie, MD, MPH, FAHA, Paul A. Heidenreich, MD, FACC, FAHA, Katherine T. Murray, MD, FACC, FAHA, FHRS, Julie B. Shea, MS, RNCS, FHRS, Cynthia M. Tracy, MD, FAHA, and Clyde W. Yancy, MD, MACC, FAHA

Paroxysmal atrial fibrillation	Paroxysmal AF is defined as AF that terminates spontaneously or with intervention within 7 days of onset.
Early Persistent atrial fibrillation	Early persistent AF is defined as AF that is sustained beyond 7 days but is less than 3 months in duration.
Long standing Persistent atrial fibrillation	Long-standing persistent AF is defined as continuous AF of greater than 12 months' duration.
Silent atrial fibrillation	Silent AF is defined as asymptomatic AF diagnosed with an opportune ECG
Permanent atrial fibrillation	Permanent AF is defined as the presence of AF that is accepted by the patient and physician, and for which no further attempts to restore or maintain sinus rhythm will be undertaken. The term permanent AF represents a therapeutic attitude on

Modifiable Risk Factor	Non Modifiable Risk Factor
Hypertension	Age
Obesity	Sex
Obstructive sleep apnea (OSA)	Family History
Endurance exercise	Race
Alcohol consumption	Tall stature
Thyroid disease	
Among people of European de developing AF after age 40 is 26 age is perhaps the most powerf	scent, the lifetime risk of 3% for men and 23% for women ul.

Figure 6. Kaplan-Meier curves of various lifestyle modifications.

The benefits of lifestyle and risk factor modifications on AF-free survival are evident from these Kaplan-Meier survival graphs adapted with permission from Pathak et al.^{11–13} **A**, In the LEGACY study, greater freedom from AF was seen with greater degree of weight loss (WL) as a marker of overall management of risk factors. **B**, In the ARREST-AF Cohort Study, risk factor managemen (RFM) confers greater AF-free survival following catheter ablation procedure versus usual care. **C**, In the CARDIO-FIT study (Cardiorespiratory Fitness on Arrhythmia Recurrence in Obese Individuals With Atrial Fibrillation), gain in cardiorespiratory fitness (MET, metabolic equivalent) confers independent and incremental AF-free survival to changes in weight. AF indicates atrial fibrillation.

ajor phase III trials for NOAC v	ersus Warfarin in non-v	valvular atrial fibrillation.		
	RE-LY Dabigatran ^{5, 7}	ARISTOTLE Apixaban ^{5, 6}	ROCKET AF Rivaroxaban ^{5, 8}	ENGAGE AF TIMI 48 Edoxaban ^{5, 9}
Drug mechanism	IIa inhibitor	Factor Xa inhibitor	Factor Xa inhibitor	Factor Xa inhibitor
Onset of action	2 h	1–2 h	2–4 h	1–2 h
Half-life	12–17 h	Approx. 12 h	6–13 h	10–14 h
Study population	N = 18,113	N = 18,201	N = 14,264	N = 21,105
Dosing	150 mg twice daily	5 mg twice daily	20 mg daily	60 mg daily
	110 mg twice daily	2.5 mg twice daily if age > 80, weight < 60 kg,	15 mg daily if	30 mg daily if CrCl 30–50 ml / min, w
Average CHADS.	21	2 1	35	use of P-glycoprotein initiations
Stroke/SE reduction vs. VKAs	110 mg:	Superior**	Non-inferior*	30 mg.
Subrey SE reduction 13, The S	Non-Inferior*	Superior	Hon micror	Non-inferior [®]
	150 mg:			60 mg:
	Superior**			Superior**

		Choice of NOACs	Considerations
	Gastrointestinal Bleeding ⁶ Elderly ^{17–19}	Apixaban Rivaroxaban Apixaban Edoxaban 110 mg	Only NOAC with smaller number of GI bleeds in the original studies. 150 mg dabigatran showed trend toward higher bleeding in the elderly.
Choice of	Impaired Renal Function ^{26–29}	dabigatran Apixaban Rivaroxaban Edoxaban	Caution for edoxaban in patients with CrCl >95 ml/min; Dabigatran should be avoided due to high renal clearance
NOACs in	Coronary Artery Disease ^{33, 97}	Rivaroxaban	Only NOAC with a proven benefit after ACS.
high risk	Diabetes Mellitus ⁵⁵	Apixaban Dabigatran Edoxaban Rivaroxaban	No interaction between DM and efficacy and safety of NOACs
population	Cardioversion ^{86, 87}	Edoxaban Rivaroxaban	Both prospectively found to be viable alternatives to warfarin for cardioversion.
	Mechanical Heart Valve ⁹⁵	None	NOACs have been associated with higher rates of thromboembolic and bleeding events
	Bioprosthetic Valve ⁹⁶	More data needed	Comparable treatment effects between apixaban and VKAs in a small number of patients with bioprosthetic valves in ARISTOTLE.
	Non-mechanical, Non-rheumatic valvular disease ^{93, 98}	Apixaban Edoxaban Dabigatran	Rivaroxaban was associated with higher rates of bleeding in those with native valvular disease.

TABLE 2 WA	TCHMAN Studies	and Key Re				
Study (Ref. #)	Design	CHADS2, Mean ± SD	Procedural Success, %	Follow-Up Duration	Efficacy Events	Important Safety Issues With WM
PROTECT-AF (29,31)	RCT, N = 707: 2 WM; 1 warfarin	2.2 ± 1.2	90.9	1,065 pt-yrs (mean 1.8 yrs)	Primary endpoint: stroke, systemic embolism, CV death: 3.0% WM, 4.9% warfarin per 100 pt-yrs; RR: 0.62. Met noninferiority criteria.	Serious pericardial effusion 4.8%, procedural stroke 1.3%, device embolization 0.6%, major bleeding 3.5% (4.1% warfarin), hemorrhagic stroke 0.2% (2.5% warfarin).
				1,588 pt-yrs (mean 2.3 yrs)	Primary endpoint: 3.0% WM, 4.3% warfarin per 100 pt-yrs; RR: 0.71. Met noninferiority criteria.	
				2,621 pt-yrs (45 months)	Primary endpoint: 2.3% WM, 3.8% warfarin per 100 pt-yrs; RR: 0.6. Met noninferiority and superiority criteria.	Major bleeding 4.8% (7.4% warfarin), hemorrhagic stroke 0.6% (3.7% warfarin).
PREVAIL (32)	RCT, N = 407: 2 WM; 1 warfarin	2.6 ± 1.0	95.1	18 months	Stroke, systemic embolism, CV, and unexplained death at 18 months: 0.064 both groups, RR: 1.07. Did not meet noninferiority criteria (-90 pts at 18-month follow-up). Eschemic stroke or systemic embolism >7 days met noninferiority criteria: 0.0253 WM; 0.0201 warfarin.	7-day death, ischemic stroke, systemic embolism, and procedure complication met noninferiority: criteria (2.2% WM), Pericardial effusion needing pericardic centesis, window, or surgery 1.9%. Procedure stroke 0.4%. Device embolization 0.8%.
CAP (30)	Registry, N = 460	2.4 ± 1.2	95.0	Median 0.4 yr		Procedural stroke 0%, serious pericardial effusion 2.2%.
ASAP (33)	Registry, N = 150	2.8 ± 1.2	94.7	14 months	All-cause stroke and systemic embolism 2.3%/yr. Observed ischemic stroke rate was 77% lower than expected.	Serious procedure- or device-related events 8.7%. Pericardial effusion with tamponade 1.3%, device embolism 1.3%, device thrombus 4.0% (with 0.7% causing stroke).
ASAP = ASA Plavi years, diabetes m Patients With Atri RCT = randomize	x Feasibility Study Wi ellitus history, stroke al Fibrillation vs. Lon d controlled trial; RR	ith WATCHMAN e or transient iso g-Term Warfarir t = risk ratio; W	Left Atrial Apper chemic attack sy 1 Therapy; PROTI M = WATCHMA	adage Closure Technolog; mptoms previously; CV ECT-AF = WATCHMAN Li N.	y; CAP = Continued Access Protocol; CHADS2 = congestiv cardiovascular; PREVAIL = Prospective Randomized E aft Atrial Appendage System for Embolic Protection in Pa	e heart failure history, hypertension history, age ≈7: valuation of the WATCHMAN LAA Closure Device tients With Atrial Fibrillation; pt-yrs = patient-years

5-Year Patient-Level Meta-Analysis of PROTECT AF and PREVAIL (2:1 Randomization)

	Device Group	(n = 732)	Control Group (n = 382)		Hazard Ratio (95% Confidence Interval)	p Value
	No. of Events	Rate (per 100 PY)	No. of Events	Rate (per 100 PY)		
Efficacy: stroke/SE/CV death	79/2,856.0	2.8%	50/1,472.8	3.4%	0.82 (0.58–1.17)	0.27
All stroke or SE	49/2,849.4	1.7%	27/1,472.9	1.8%	0.96 (0.60-1.54)	0.87
Ischemic stroke or SE	45/2,850.2	1.6%	14/1,479.1	0.95%	1.71 (0.94–3.11)	0.08
Hemorrhagic stroke	5/2,954.8	0.17%	13/1,499.0	0.87%	0.20 (0.07-0.56)	0.0022
Ischemic stroke or SE >7 days	37/2,862.1	1.3%	14/1,479.1	0.95%	1.40 (0.76-2.59)	0.28
Disabling stroke	13/2,943.0	0.44%	15/1,493.8	1.0%	0.45 (0.21-0.94)	0.03
Nondisabling stroke	31/2,879.1	1.1%	12/1,484.3	0.81%	1.38 (0.71-2.68)	0.35
CV/unexplained death	39/2,960.5	1.3%	33/1,505.2	2.2%	0.59 (0.37-0.94)	0.027
All-cause death	106/2,961.6	3.6%	73/1,505.2	4.9%	0.73 (0.54-0.98)	0.035
Major bleeding, all	85/2,748.4	3.1%	50/1,414.7	3.5%	0.91 (0.64–1.29)	0.60
Major bleeding, non-procedure- related	48/2,853.6	1.7%	51/1,411.3	3.6%	0.48 (0.32–0.71)	0.0003
Two strokes in PREVAIL are exclude	d because the b	aseline MRS score	was unavailable			

Druge Studiod	No. of	Antiorrhythmic	Control	[reto on (60% cl)	PValue
Drugs Studied	STUDIA2	Anuarriyunnic	Collaron			P value
Antiarrhythmic vs Control						
Class IA					0.10 1	10
Disopyramide phosphate	2	2/75	0/71	7.56 (0.47-1.22)		.16
Quinidine suifate	7	21/1128	4/548	2.26 (0.93-5.45)	+	07
All class IA	8	23/1203	4/594	2.39 (1.03-5.59)		04
Class IB						
All: aprindine hydrochloride, bidisomide Class IC	2	9/781	3/540	1.89 (0.59-6.03)		.28
Flecalnide acetate	3	0/71	0/78	Not Estimable		NA
Propatenone hydrochloride	5	0/720	2/378	0.05 (0.00-1.02)		.05
All class IC	9	1/843	2/466	0.14 (0.00-1.88)		.14
Class II						
All: metoproloi tartrate	1	3/197	0/197	7.47 (0.77-72.20)		
Class III						
Amiodarone	4	13/428	3/245	1.96 (0.68-5.67)	+	.21
Dofetilide	2	83/431	83/325	0.97 (0.67-1.40)	- - -	.88
Sotalol hydrochloride	9	30/1391	5/815	2.09 (0.97-4.49)	⊢	06
Azimilide dihydrochloride + dronedarone	2	10/1042	4/537	1.31 (0.43-3.97)	■	.63
All class III	16	136/3292	95/1922	1.19 (0.88-1.61)	 −	.27
Comparing 2 Antiarrhythmics		Drug A	Drug B			
Disopyramide vs other class I drugs	2	1/60	2/53	0.46 (0.05-4.52)		51
Quinidine vs						
Flecalnide	2	0/132	0/137	Not Estimable		NA
Other class drugs	4	2/258	2/268	1.04 (0.14-7.46)	_	
Sotalol	6	13/1109	17/869	0.71 (0.34-1.46)		35
Flecalnide vs.nronafenone	2	0/145	1/152	0 14 (0 00-6 96)	-	32
Amiodarone vs				0.11(0.00 0.00)	-	
Class I drugs	4	10/241	26/257	0.39 (0.19-0.79)		.009
Sotalol	3	28/463	39/447	0.66 (0.40-1.10)		.11
Sotalol vs class Lexcept guinidine	4	15/243	17/251	0.94 (0.44-1.99)		87
could to class recept quintine		101240	17231	0.01(0.11-1.00)	1 1	

Antiarrhythmic Drugs for Maintaining Sinus Knymm After Cardioversion of Atrial Fibrillation A Systematic Review of Randomized Controlled Trials Carmelo Lafuente-Lafuente, MD; Ste²phane Mouly, MD, PhD; Miguel Angel Longa² s-Tejero, MD, PhD;

	No of	No. of Even	ts/Total	P	eto OR (95% CI)	_
Drugs Studled	Studies	Antiarrhythmic	Control	I		P Value
Antiarrhythmic vs Control						
Class IA					0.10 1	10
Disopyramide hydrochloride	2	40/75	49/71	0.52 (0.27-1.01)		.05
Quinidine sulfate	7	741/1106	417/518	0.51 (0.40-0.65)	-=-	<.001
All class IA	8	781/1118	449/564	0.51 (0.40-0.64)	-=-	<.001
Class IB						
All: aprindine hydrochloride, bidisomide	2	639/781	453/540	0.84 (0.63-1.13)		.26
Class IC						
Flecalnide acetate	3	31/71	56/78	0.31 (0.16-0.60)		<.001
Propafenone hydrochloride	5	376/720	276/378	0.37 (0.28-0.48)		<.001
All class IC	9	443/843	342/466	0.36 (0.28-0.45)	-=-	<.001
Class II						
All: metoproloi tartrate	1	127/197	140/197	0.74 (0.49-1.13)	_ − +	.16
Class III						
Amiodarone	4	200/428	209/245	0.19 (0.14-0.27)		<.001
Dofetilide	2	252/431	274/325	0.28 (0.20-0.38)		<.001
Sotalol hydrochloride	9	916/1391	622/815	0.53 (0.44-0.65)		<.001
Dronedarone	1	116/151	43/48	0.45 (0.20-1.02)	—•	.06
All class III	15	1484/2401	1148/1433	0.37 (0.32-0.43)	•	<.001
Comparing 2 Antiarrhythmics		Drug A	Drug B			
Disopyramide vs other class I drugs	2	26/60	27/53	0.76 (0.36-1.60)	∎ ⊢	.47
Quinidine vs						
Flecalnide	2	103/132	99/137	1.38 (0.79-2.41)	.↓∎	.26
Other class I drugs	4	176/258	168/268	1.30 (0.90-1.87)		.17
Sotalol	6	715/1109	556/869	0.92 (0.76-1.11)	.	.38
Flecalnide vs propafenone	2	49/145	56/152	0.87 (0.54-1.40)		.56
Amiodarone vs	-					
Class I drugs	4	100/241	175/257	0.31 (0.21-0.45)		<001
Sotalo	3	218/463	303/447	0.43 (0.33-0.56)		<001
Sotaloj vs class Lexcent quinidine	4	150/243	157/251	0.98 (0.67-1.45)		03
ovanor vo ciaco i except quintunité	-	100/240	101/201	0.00 (0.07-1.40)	- - -	.85

2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation @ •

Hugh Calkins, MD (Chair),¹ Gerhard Hindricks, MD (Vice-Chair),^{2,*} Riccardo Cappato, MD (Vice-Chair),^{3,†} Young-Hoon Kim, MD, PhD (Vice-Chair),^{4,§} Eduardo B. Saad, MD, PhD, Vice-Chair),^{5,‡} Luis Aguinaga, MD, PhD,^{6,‡} Joseph G. Akar, MD, PhD,⁷ Vinay Badhwar, MD,^{8,#} Josep Brugada, MD, PhD,^{9,*} John Camm, MD,^{10,*} Peng-Sheng Chen, MD,¹¹ Shih-Ann Chen, MD,^{12,§} Mina K. Chung, MD,¹³ Jens Cosedis Nielsen, DMSc, PhD,^{14,*} Anne B. Curtis, MD,^{15,4} D. Wyn Davies, MD,^{16,§} John D. Day, MD,¹⁷ André d'Avila, MD, PhD,^{15,††} N.M.S. (Natasja) de Groot, MD, PhD,^{19,*} Luigi Di Biase, MD, PhD,^{20,*} Mattias Duytschaever, MD, PhD,^{21,*} James R. Edgerton, MD,^{22,#} Kenneth A. Ellenbogen, MD,²³ Patrick T. Ellinor, MD, PhD,²⁴ Sabine Ernst, MD, PhD,^{25,*} Guilherme Fenelon, MD, PhD,^{26,‡} Edward P. Gerstenfeld, MS, MD,²⁷ David E. Haines, MD,²⁸ Michel Haissaguerre, MD,^{29,*} Robert H. Helm, MD,³⁰ Elaine Hylek, MD, MPH,³¹ Warren M. Jackman, MD,²² Jose Jalife, MD,³³ Jonathan M. Kalman, MBBS, PhD,^{34,§} Josef Kautzner, MD, PhD,^{35,*} Hans Kottkamp, MD,^{36,*} Karl Heinz Kuck, MD, PhD,^{40,¶} Bruce D. Lindsay, MD,⁴¹ Laurent Macle, MD,^{42,**} Moussa Mansour, MD,⁴³ Francis E. Marchlinski, MD,⁴⁶ Gregory F. Michaud, MD,^{45,†} Hirosthi Nakagawa, MD, PhD,⁴⁶ Andrea Natale, MD,⁴⁵ Stanley Nattel, MD,⁸⁸ Ken Okumura, MD, PhD,^{40,§} Richard Schilling, MD,^{55,*} Claudio Tondo, MD, PhD,^{56,*} Hsuan-Ming Tsao, MD,^{57,§} Atul Verma, MD,⁵⁸ David J. Wilber, MD,⁵⁹ Teiichi Yamane, MD, PhD^{60,††}

Document Reviewers: Carina Blomström-Lundqvist, MD, PhD; Angelo A.V. De Paola, MD, PhD; Peter M. Kistler, MBBS, PhD; Gregory Y.H. Lip, MD; Nicholas S. Peters, MD; Cristiano F. Pisani, MD; Antonio Raviele, MD; Eduardo B. Saad, MD, PhD; Kazuhiro Satomi, MD, PhD; Martin K. Stiles, MB ChB, PhD; Stephan Willems, MD, PhD

5												
Par	Ó	xysm	al	AF	and	ab	platior	ר				
Trial	Year	Туре	N	AFtype	Ablation strategy	Initial time frame	Effectiveness A endpoint s	blation	Drug/ Control P success si	value for uccess	Ablation complications	
First-Line Therapy Trials JAMA 2005; 293: 2634-2640 (RAAFT) ³⁷⁷	2005	Randomized to drug, multicenter	70	Paroxysmal (N=67), persistent (N= 3)	PVI	12 months	Freedom from detectable AF	84%	37%	<0.01	9%	11%
NEJM 2012; 367:1587-1595 (MANTRA-PAF) ³⁷⁸	2012	Randomized to drug, multicenter	294	Paroxysmal AF	PVI, roof line, option mitral and tricusp	ial 24 months id	Cumulative AF burden	13% AF burder	n 19% AF burden	NS	17%	15%
JAMA 2014; 311: 692-700 (RAAFT-2) ³⁷⁹	2014	Randomized to drug multicenter	127	Paroxysmal AF	PVI plus optional no PVI targets	n- 24 months	Freedom from detectable AF, flutter, tachycardia	45%	28%	0.02	9%	4.9%
Other Paroxysmal AF Ablation Trials												
JACC 2006; 48: 2340-2347 (APAF) ¹⁰²⁷	2006	Randomized to drug single center	198	Paroxysmal AF	PVI, mitral line and tricuspid line	12 months	Freedom from detectabl AF, flutter, tachycardia	e 86%	22%	<0.001	1%	23%
Circulation 2008; 118: 2498- 2505 (A4) ²⁶¹	2008	Randomized to drug	112	Paroxysmal	PVI (optional LA line	s, 12 months	Freedom from AF	89%	23%	<0.0001	5.7%	1.7%
NEJM 2016; 374: 2235-2245 (FIRE AND ICE) ⁴⁸⁹	2016	Randomized RF vs Cryo, multicenter	762	Paroxysmal AF	PVI	12 months	Freedom from detectable AF, flutte tachycardia	64.1% (RF) r,	65.4% (cryo	o) NS	12.8%	10.2%

Persistent AF and ablation

Trial	Y	ear	Туре	N	AF	type	Ablation strategy	Initia time t	l frame	Effectiveness endpoint	Ablation success	Drug/ Control success	P value for success	Ablation complications
Other Persistent A Trials	Ablation										~			
NEJM 2006; 35 934-941 ¹⁰²⁸	4:	2006	R	andomized to RF ablation or to CV and short term amio	146	Persistent	PVI, roof, mitral l	ine	12 month	s No AF or flutter mon	th 12 74%	58%	0.05	1.3%
EHJ 2014; 35: (SARA) ¹⁰³⁰	501-507	2014	R	andomized to drug (2:1 ablation to drug), multicenter	146	Persistent	PVI (optional LA I CFAEs)	ines, 1	12 month	s Freedom from AF/flu lasting >24h	tter 70%	44%	0.002	6.1%
NEJM 2015; 37 1812-1822	2:	2015	R	andomized ablation strategies, multicenter	589	Persistent	PVI alone versus F CFAEs or PVI &	VI & : lines	18 month	s Freedom from afib w without drugs	ith or 59% (PVI alo	ne) 49%&4	6% NS	6%
Other Mixed Parox Persistent AF A	ysmal and blation Tria	ls												
J Med Assoc Th (Suppl 1): S	ai 2003; 86 8-S16 ¹⁰²⁵	2003	R	andomized to RF ablation or amiodarone	30	Paroxysmal (70%), Persistent (30%)	PVI, mitral line, C SVC to IVC	Π, :	12 month	s Freedom from AF	79%	40%	0.018	6.70%
EHJ 2006; 27:	216-221 ¹⁰²⁰	2006	R	andomized to RF ablation or drug, multicenter	137	Paroxysmal (67%), Persistent (33%)	PVI, mitral line, C	Π	12 month	s Freedom from AF, fu tachycardia	utter, 66%	9%	<0.001	4,40%
JCVEP 2009, 24): 22-28 ¹⁰²⁹	2009	R	landomized to RF ablation or drug, multicenter	70	Paroxysmal (41%), Persistent (59%) & ty DM	PVI, CTI, optional mitral line and line rpe 2	roof	12 month	s Freedom from AF an atypical atrial flu	d 80% utter	43%	0.001	2.90%

Indications for catheter a	blation of atrial fibrillation		
A. Indications for cathete	r ablation of atrial fibrillation		
Symptomatic AF refractory or intolerant to at least one Class I or III antiarrhythmic medication	Paroxysmal: Catheter ablation is recommended.	I	A
	Persistent: Catheter ablation is reasonable.	IIa	B-NR
	Long-standing persistent: Catheter ablation may be considered.	IIb	C-LD
Symptomatic AF prior to initiation of antiarrhythmic therapy with a Class I or III antiarrhythmic medication	Paroxysmal: Catheter ablation is reasonable.	IIa	B-R
	Persistent: Catheter ablation is reasonable. Long-standing persistent: Catheter ablation may be considered.	IIa IIb	C-EO C-EO

TABLE 10 Common Media	cation Dosage for Rate Control of AF	
	Intravenous Administration	Usual Oral Maintenance Dos
Beta blockers		
Metoprolol tartrate	2.5-5.0 mg IV bolus over 2 min; up to 3 doses	25-100 mg BID
Metoprolol XL (succinate)	N/A	50-400 mg QD
Atenolol	N/A	25-100 mg QD
Esmolol	500 mcg/kg IV bolus over 1 min, then 50-300 mcg/kg/min IV	N/A
Propranolol	1 mg IV over 1 min, up to 3 doses at 2-min intervals	10-40 mg TID or QID
Nadolol	N/A	10-240 mg QD
Carvedilol	N/A	3.125-25 mg BID
Bisoprolol	N/A	2.5-10 mg QD
Nondihydropyridine calcium chann	el antagonists	
Verapamil	0.075–0.15 mg/kg IV bolus over 2 min; may give an additional 10.0 mg after 30 min if no response, then 0.005 mg/kg/min infusion	180-480 mg QD (ER)
Diltiazem	0.25 mg/kg IV bolus over 2 min, then 5–15 mg/h	120-360 mg QD (ER)
Digitalis glycosides		
Digoxin	0.25 mg IV with repeat dosing to a maximum of 1.5 mg over 24 h	0.125-0.25 mg QD
Others		
Amiodarone*	300 mg IV over 1 h, then 10-50 mg/h over 24 h	100-200 mg OD

Indications for cathet	er atrial fibrillation ablation in populations of patient	s not well represented	in clinica	al trials
Congestive heart failure	It is reasonable to use similar indications for AF ablation in selected patients with heart failure as in patients without heart failure	IIa	B-R	233-237,384,386-395,104
Older patients (>75 years of age)	It is reasonable to use similar indications for AF ablation in selected older patients with	IIa	B-NR	396-398,401-404
Hypertrophic cardiomyopathy	It is reasonable to use similar indications for AF ablation in selected patients with HCM as in patients without HCM.	IIa	B-NR	385, 1043, 1044
Young patients (<45 years of age)	It is reasonable to use similar indications for AF ablation in young patients with AF (<45 years of ace) as in older patients.	IIa	B-NR	405,1045
Fachy-brady syndrome	It is reasonable to offer AF ablation as an alternative to pacemaker implantation in natients with tachy-brady syndrome.	IIa	B-NR	381-383
Athletes with AF	It is reasonable to offer high-level athletes AF as first-line therapy due to the negative effects of medications on athletic performance.	IIa	C-LD	370-372
Asymptomatic AF**	Paroxysmal: Catheter ablation may be considered in select patients.**	IIb	C-EO	416,418
	Persistent: Catheter ablation may be considered in select patients.	IIb	C-EO	417

Article

Catheter Ablation Versus Medical Rate control in Atrial Fibrillation and Systolic Dysfunction (CAMERA-MRI)

TheBakerHeart&DiabetesInstitute,Melbourne,Austral ia; TheAlfredHospital, Melbourne, Australia; Monash Heart, Melbourne, Australia; Royal Melbourne Hospital, Melbourne, Australia; University of Melbourne, Melbourne, Australia; Monash University, Melbourne, Australia.

Primary and secondary endpoints	Cathe	ter ablation	Medical	rate control	Comparison between		
	(n=33)		()	n=33)	treatment arms		
Drim any oude cint	Baseline	6 months	Baseline	6 months	Mean Difference	P value*	
LVEF (MRI) (%)	31.8 ± 9.4	50.1 ± 11^{8}	34.1 ± 7.8	$385 + 87^{\ddagger}$	+14.0 (8.5, 19.5)	<0.0001	
Secondary endpoints		50.1 1 11		50.5 1 0.7			
LVEF (echocardiography) (%)	35.0 ± 9.8	$52.7 \pm 11.9^{\$}$	34.8 ± 43.7	$43.7 \pm 12.7^{\ddagger}$	+7.5 (+1.6, +13.5)	0.0137	
LV end systolic volume (ml/m ²)	79.5 ± 33.3	55.3 ± 30.5 [§]	76.3 ± 27.2	$68.2 \pm 26.3^{\dagger}$	-16.1 (-27.7, -4.5)	0.0075	
LV end diastolic volume (ml/m ²)	114 ± 40	$106 \pm 33^{\dagger}$	113 ± 32	109 ± 39	-2.1 (-14.5, +10.4)	0.74	
LA volume (ml/m ²)	54.4 ± 16.1	$43.4 \pm 13.3^{\$}$	53.9 ± 18.9	55.6 ± 14.6	-13.4 (-20.4, -6.5)	0.0003	
LV stroke volume (ml/m ²)	34.9 ± 12.7	$50.5 \pm 10.1^{\$}$	38.6 ± 12.5	40.5 ± 14.8	-16.1 (-27.7, -4.45)	<0.0001	
Average NYHA Class	2.55 ± 0.62	$1.33 \pm 0.48^{\$}$	2.45 ± 0.56	$2.06 \pm 0.50^{\ddagger}$	-0.82 (-1.13, -0.51)	<0.0001	
BNP (log[ng/L])	2.34 ± 0.38	$1.84 \pm 0.37^{\$}$	2.27±0.43	2.14 ± 0.56	-0.38 (-0.65, -0.11)	0.0063	
BNP (ng/L) ¹¹	266 ± 210	98 ± 77	256 ± 208	247 ± 197		0.0131	
6 minute walk test distance (m)	491 ± 147	$546 \pm 82^{\dagger}$	489 ± 132	$518 \pm 119^{\dagger}$	+27 (-28, +79)	0.34	
SF-36 Physical component scores	41.6 ± 11.6	$48.5 \pm 8.2^{\$}$	38.8 ± 10.4	$44.6 \pm 11.2^{\ddagger}$	1.3 (-3.9, +6.5)	0.62	
SF-36 Mental component scores	49.1 ± 10.6	$53.3 \pm 7.7^{\ddagger}$	50.3 ± 11.2	52.9 ± 8.9	1.6 (-3.1, +6.3)	0.49	

Doculto							
Results							
Compariso	n within each grou	D (LGE	positive vs	LGE negative)			
Patients undergoing catheter	LGE positive	LGE	negative	Mean diffe	rence	P value	
ablation (n=36)	(n=14)	(n=22)					
Baseline LVEF	32.1 ± 8.7%	31.7	± 9.4%	0.4% (-5.9,%, 6.8%)		0.89	
6 month LVEF	43.7 ± 11.2%	54.0	± 8.5%	+10.3% (3.3%	, 17.0%)	0.0036	
Change in LVEF from baseline	+11.6 ± 10.3%	+22.3	±11.3%	+10.7% (3.2%	, 18.3%)	0.0069	
LVEF ≥50% at 6 months (%)	29% (4)	73	% (16)	44.2% (10.7%, 66.1%)		0.0093	
Improvement in LVEF by ≥15%	29% (4)	829	% (18)	53.2% (20.2%	,73.3%)	0.0014	
Patients undergoing medical rate	LGE positive	LGE	negative	Mean diffe	rence	P value	
control (n=30)	(n=10)	(1	=20)				
Baseline LVEF	29.0 ± 7.8%	36.8 ± 7.0 %		7.7% (2.1%, 13.3%)		0.0089	
6 month LVEF	33.8 ± 7.3%	39.3	± 9.8%	5.5% (-1.0%, 12.0%)		0.09	
Change in LVEF from baseline	$+4.8 \pm 8.5\%$	+2.9	± 9.8%	2.3% (-5.1%	,9.7%)	0.54	
LVEF ≥50% at 6 months (%)	0% (0)	10	% (2)	10% (-25%	, 33%)	0.30	
Improvement in LVEF by ≥15%	0% (0)	10	% (2)	10% (-25%	, 33%)	0.30	
Comparison betwee	n treatment arms (o	atheter	ablation a	nd medical rate	control)		
LGE positive	Mean differen	ice	9	5% CI	P	value	
Change in LVEF from baseline	+6.8%	% -1		%,15.0%	0.10		
LVEF \geq 50% at 6 months (%)	29%	%		%, 54.7%	0.06		
LGE negative	Mean differen	ice	9	5% CI I		value	
	+19.8%		13.1	%, 26.4%	<	0.0001	
Change in LVEF from baseline	620	30.0		%.80.4%	<	0.0001	
LVEF ≥50% at 6 months (%)	03%						

Focused Update of the AHA/ACC/HRS Atrial Fibrillatio Guideline Jan 2019

- AF catheter ablation may be reasonable in symptomatic patients with heart failure and a reduced ejection fraction to reduce mortality and heart failure hospitalizations (COR IIb, B-R).
- In at-risk AF patients who have undergone coronary artery stenting, double therapy with clopidogrel and low-dose rivaroxaban (15 mg daily) or dabigatran (150 twice daily) is reasonable to reduce the risk of bleeding as compared to triple therapy (COR IIa, B-R).
- Weight loss combined with risk factor modification is recommended for overweight and obese patients with AF (COR I, LOE B-R).

