Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s Disea...
Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s Disease (AD) in the elderly?

Tiago C. C. Pinto, Leonardo Machado, Tatiana M. Bulgacov, Antônio L. Rodrigues-Júnior, Maria L. G. Costa, Rosana C. C. Ximenes, and Everton B. Sougey

Post-graduate program in Neuropsychiatry and Behavioral Science at the Federal University of Pernambuco, Recife, Brazil

ABSTRACT

Objective: To compare the accuracy of Mini-Mental State Examination (MMSE) and of the Montreal Cognitive Assessment (MoCA) in tracking mild cognitive impairment (MCI) and Alzheimer’s Disease (AD).

Method: A Systematic review of the PubMed, Bireme, Science Direct, Cochrane Library, and PsycInfo databases was conducted. Using inclusion and exclusion criteria and staring with 1,629 articles, 34 articles were selected. The quality of the selected research was evaluated through the Quality Assessment of Diagnostic Accuracy Studies 2 tool (QUADAS-2).

Result: More than 80% of the articles showed MoCA to be superior to MMSE in discriminating between individuals with mild cognitive impairment and no cognitive impairment. The area under the curve varied from 0.71 to 0.99 for MoCA, and 0.43 to 0.94 for MMSE, when evaluating the ability to discriminate MCI in the cognitively healthy elderly individuals, and 0.87 to 0.99 and 0.67 to 0.99, respectively, when evaluating the detection of AD. The AUC mean value for MoCA was significantly larger compared to the MMSE in discriminating MCI from control [0.883 (CI 95% 0.855-0.912) vs MMSE 0.780 (CI 95% 0.740-0.820) p < 0.001].

Conclusion: The screening tool MoCA is superior to MMSE in the identification of MCI, and both tests were found to be accurate in the detection of AD.

Key words: Cognitive assessment, Alzheimer’s disease, mild cognitive impairment, diagnosis and classification, early onset dementia

Introduction

Dementia is a worldwide public health problem. According to the World Health Organization, in 2012, 36 million people were diagnosed with dementia, at a prevalence rate of 4.7%. For the people older than 65, the prevalence rate practically doubled every five years. In addition to the prevalence, the impact on the economy, health, and social aid for dementia is also increasing (Alzheimer’s Association, 2011; Hurd et al., 2013; Prince et al., 2013; Wimo et al., 2013a; 2013b; Zhu et al., 2015). As a result, dementia has become a priority for a coordinated action by the European Union at a global stage. Several countries have national strategies for dementia and governmental policies, which emphasize early diagnosis and intervention (Banerjee, 2010; Prince et al., 2011).

Alzheimer’s Disease (AD) is the main cause of dementia. It is a progressive neurodegenerative disease, clinically characterized by the impairment of cognitive abilities and functions, as well as changes in behavior (Dubois et al., 2015). Another cognitive disorder which has cognitive characteristics between normal cognition and dementia is mild cognitive impairment (MCI). It is a clinical and cognitive syndrome with clear diagnostic criteria (Petersen, 2004). To diagnose MCI, the following is needed: complaint of a decline in cognitive function, obtained from the individual or an informant who...
knows the patient; the deterioration of one or more cognitive domains at a higher level than expected at the given age and education of the patient, confirmed in an objective manner by a professional through a cognitive test; independent function preserved, with no impairment in social and work abilities of the individual (Albert et al., 2011).

The cognitive decline could be from a variety of cognitive domains, including memory, executive function, attention, language, and visuospatial ability. Impaired episodic memory, with a reduction in the ability to learn and retain new information, is especially seen in patients with MCI, who could later progress to dementia from AD (Albert et al., 2011). The annual conversion rate of MCI to AD varies from 6% (Forlenza et al., 2010), 10%–15% (Petersen et al., 1999), to 31% a year (Bruscoli and Lovestone, 2004).

Therefore, identifying MCI is fundamental for the execution of preventive and therapeutic interventions in the early stages of the disease (Schönknecht et al., 2005). However, the diagnosis of MCI is a complex task at times, considering that it is necessary to frequently distinguish it from the manifestations of early signs of onset dementia and the cognitive changes regarding the natural process of aging.

The accurate and early diagnosis of cognitive impairment benefits patients, families, and society (Alzheimer’s Association, 2011; Tsai et al., 2016). One of the main advantages is the opportunity to initiate an early effective and adequate intervention. It could also improve the access of the patient to support services and allow for future planning. An early intervention can potentially improve the quality of life of the patients and their caregivers (Boise et al., 1999; De Vugt and Verhey, 2013).

Because complaints regarding memory loss are frequent during physician office visits, reliable and valid tools to discriminate healthy patients from those with impairment are necessary. The first approach for a cognitive evaluation involves administering a cognitive triage test (Hebert et al., 2013). Although several triage tools are used to detect a decline in cognitive function, The Mini-Mental State Examination (MMSE) has been the most used screening instrument throughout decades (Batty et al., 2013; Bos et al., 2015; Folstein et al., 1975; Matsumoto et al., 2014; Tsoi et al., 2015; Zeki Al Hazzouri et al., 2014). However, it has shown not to be adequate in detecting MCI and clinical signs of dementia (Carnero-Pardo, 2014, 2015; Ihl et al., 1992; Petersen, 2011; Portet et al., 2006; Quiroga et al., 2004; Tombaugh and McIntyre, 1992; Wind et al., 1997). Thus, new triage tests, which include The Montreal Cognitive Assessment (MoCA), have been developed (Olazarán et al., 2016; Velayudhan et al., 2014).

MoCA was developed by Nasreddine and collaborators (2005) and has been shown as a tracking tool with a high ability to discriminate normal cognitive function and MCI and early onset dementia. The average time to administer the test is 10 to 15 minutes. The main advantage of MoCA is its sensitivity in detecting MCI and mild AD: 90% and 100%, respectively (Nasreddine et al., 2005).

Studies evaluated the cognitive triage ability between MoCA and MMSE, demonstrating MoCA to be a more useful tracking tool than MMSE in detecting dementia (Freitas et al., 2013; Fujiwara et al., 2010; Gil et al., 2015; Luis et al., 2009; Tsai et al., 2016; Yeung et al., 2014). However, some researchers have indicated that MoCA is not superior to MMSE when evaluating patients with MCI (Kasai et al., 2012; Zhou et al., 2014).

Consequently, MoCA and MMSE have been used as cognitive tracking tools, including in primary care clinics, with positive results (Hanzevacki et al., 2011). Nevertheless, there is no consensus as to which tool is more accurate in detecting a decline in cognitive function. Therefore, the objective of this systematic review is to evaluate the current state of the subject and assess which of the tests has been shown to be more accurate in tracking MCI and AD and which has been more recommended by researchers.

Method

This systematic review was registered on the Prospero systematic review website (PROSPERO 2017: CRD42017069349). Searches were conducted from May to July 2017, with an updated article search in March 2018, through five servers in the following data bases: MEDLINE, through Pubmed (http://www.pubmed.gov), Biblioteca Regional de Medicina (BIREME) [Literatura Latino-americana e do Caribe em Ciências da Saúde (LILACS), Indice Bibliográfico Espanhol de Ciências da Saúde (IBECS) and the Scientific Electronic Library Online (SciELO)], Science Direct, Cochrane Library and PsycInfo. The search for articles was conducted using the following strategy and terms: “Montreal Cognitive Assessment” OR MoCA OR “ Avaliação cognitiva de Montreal” OR “Evaluación Cognitiva Montreal” AND “Mini Mental State Examination” OR “Mini mental” OR MMSE OR “Mini Exame do Estado Mental” OR MEEM OR “Mini examen del estado mental”.

The inclusion criteria of this systematic review were original studies that evaluated and compared the accuracy of MoCA and MMSE in discriminating cognitively healthy elderly individuals from elderly individuals with MCI and/or AD. The exclusion criteria of this systematic review were studies that evaluated MoCA or MMSE in detecting dementia, studies that evaluated MoCA and MMSE in people with multiple sclerosis, studies that evaluated MoCA or MMSE in people with a history of head injury, studies that evaluated MoCA or MMSE in people with psychiatric disorders, and studies that evaluated MoCA or MMSE in people with other cognitive disorders. The exclusion criteria also included studies that evaluated MoCA or MMSE in people with brain tumor, studies that evaluated MoCA or MMSE in people with brain trauma, studies that evaluated MoCA or MMSE in people with brain surgery, and studies that evaluated MoCA or MMSE in people with brain anemia.
criteria were review articles, case reports or a series of cases or letters to the editor, including articles which did not deal with the subject matter or contained information regarding the outcome of this review. Articles in which the research conducted was not on elderly subjects or which were not written in English, Portuguese, or Spanish were also excluded. There was no restriction regarding the publication date.

A list of the items of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), developed by Liberati et al. (2009), were used as a guide to structure this study, since PRISMA currently constitutes a tool that provides better quality for systematic review studies.

The quality of the selected studies was evaluated through the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool (Whiting et al., 2011), as recommended by Cochrane Collaboration (Davis et al., 2013). The data of accuracy of MoCA and MMSE, for detection of MCI and AD, are presented as the average — considered by the sampling size in the selected studies of this systematic review — and area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI 95%). The differences between these averages were statistically compared through the Mann-Whitney test, for a 0.05 level of significance ($p < 0.05$). All the statistical analysis was computed using the GraphPad Prism 6.0 software.

Results

The search in the database found 1,629 publications. Microsoft Excel 2007 software was used to process the articles. After excluding duplicated references, a total of 837 studies were read and analyzed by two independent reviewers. Of the 837 articles selected through the title and abstract, 740 were excluded: 12 letters to the editor, 3 case reports, 41 review articles, 16 publications in conference annals, and 678 original articles which did not present the subject matter studied. Of the 87 selected articles for textual evaluation, 53 did not approach the subject matter studied. Therefore, after exclusion, 34 articles were selected for this systematic review. The stages of the selection of the articles are shown in Figure 1, following the PRISMA model.

More than 65% of the studies selected in this systematic review were conducted within the last five years, showing relevance and a growing interest in the scientific community on this subject matter (Table 1). Most of the studies were conducted in the Asian Continent (20/34), 24% of the research was conducted on elderly individuals from China (8/34), one of the countries with the largest population in the world aged over 60.

To determine the diagnosis of dementia, most of the studies used the diagnostic criteria from the Manual Diagnóstico e Estatístico de Transtornos Mentais (DSM IV). For the probable diagnosis of

Figure 1. Flowchart of the selection of the articles used in the systematic review according to the inclusion and exclusion criteria.
Table 1. Description of the studies included in the systematic review, ordered according to the publication date (n=34)

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Population (n sampling)</th>
<th>Age (years)</th>
<th>Male (%)</th>
<th>Female (%)</th>
<th>Education (years)</th>
<th>Average MMSE</th>
<th>Average MoCA</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Test which presented a higher accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saleh et al. (2018); Egypt</td>
<td>Control (112)</td>
<td>MCI (39)</td>
<td>65.9 ± 5.02</td>
<td>76.8</td>
<td>12.8 ± 4.38</td>
<td>21/22</td>
<td>0.99</td>
<td>0.94</td>
<td>99.2/98.2</td>
<td>90.7/97.4</td>
<td>MoCA to MCI</td>
</tr>
<tr>
<td>Delgado et al. (2017); Chile</td>
<td>Control (104)</td>
<td>MCI (48)</td>
<td>72.3 ± 7.64</td>
<td>50.0</td>
<td>11.4 ± 4.2</td>
<td>20/21</td>
<td>0.90</td>
<td>0.65</td>
<td>75/82</td>
<td>90/86</td>
<td>MoCA</td>
</tr>
<tr>
<td>Janelidze et al. (2017); Georgia</td>
<td>Control (46)</td>
<td>Dementia (20)</td>
<td>75.6 ± 10.8</td>
<td>67.4</td>
<td>11.5 ± 0.5</td>
<td>21/22</td>
<td>0.88</td>
<td>0.43</td>
<td>100/69</td>
<td>–</td>
<td>MoCA</td>
</tr>
<tr>
<td>Mattas-Guiu et al. (2017); Spain</td>
<td>Control (68)</td>
<td>AD (20)</td>
<td>77.6 ± 7.1</td>
<td>64.7</td>
<td>8.0 ± 5.4</td>
<td>–</td>
<td>0.86</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Roll et al. (2017); USA</td>
<td>Control (138)</td>
<td>MCI (109)</td>
<td>70.28 ± 8.99</td>
<td>66.7</td>
<td>16.95 ± 2.74</td>
<td>24/25</td>
<td>0.95</td>
<td>0.98</td>
<td>94/80</td>
<td>94/100</td>
<td>MoCA to MCI</td>
</tr>
<tr>
<td>Chen et al. (2016); China</td>
<td>Control (280)</td>
<td>AD (140)</td>
<td>75.89 ± 8.24</td>
<td>52.2</td>
<td>14.7 ± 3.9</td>
<td>21/22</td>
<td>0.99</td>
<td>0.88</td>
<td>94/80</td>
<td>75/85</td>
<td>–</td>
</tr>
<tr>
<td>Mellor et al. (2016); China</td>
<td>Control (710)</td>
<td>MCI (267)</td>
<td>70.3 ± 7.7</td>
<td>68.3 ± 0.8</td>
<td>3.7 ± 2.5</td>
<td>Education</td>
<td>61/72</td>
<td>0.90</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Note: MoCA = Montreal Cognitive Assessment; MMSE = Mini-Mental State Examination; AUC = Area Under the Curve; SD = Standard Deviation.
<table>
<thead>
<tr>
<th>STUDY, COUNTRY</th>
<th>POPULATION (N SAMPLING)</th>
<th>AGE (YEARS) AVERAGE ± SD</th>
<th>FEMALE GENDER (%)</th>
<th>EDUCATION (YEARS) AVERAGE ± SD</th>
<th>MALECA – CONTROL VS MCI – CONTROL VS AD</th>
<th>ACCURACY OF MoCA (AUC) – CONTROL VS MCI</th>
<th>ACCURACY OF MMSE (AUC) – CONTROL VS MCI</th>
<th>MMSE CONTROL VS DEMENTIA SENSITIVITY / SPECIFICITY</th>
<th>MMSE CONTROL VS MCI SENSITIVITY / SPECIFICITY</th>
<th>TEST WHICH PRESENTED A HIGHER ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsai et al. (2016); Taiwan</td>
<td>Control (26) MCI (59) AD (57)</td>
<td>76.2 ± 8.5</td>
<td>49.6</td>
<td>Elementary school: 35.9% Junior high school: 16.2% Senior high school: 19.0% University: 28.9%</td>
<td>23/24 19/20</td>
<td>0.91 0.87 0.88 0.89</td>
<td>88/73</td>
<td>79/80</td>
<td>88/70</td>
<td>84/86</td>
</tr>
<tr>
<td>Chiu et al. (2015); Hong Kong</td>
<td>Control (115) MCI (87) AD (64)</td>
<td>72.2 ± 6.1</td>
<td>75.7</td>
<td>6.97 ± 4.6 4.62 ± 5.19 4.56 ± 5.00</td>
<td>22/23 19/20</td>
<td>0.85 0.99 0.78 0.99</td>
<td>78/73</td>
<td>94/92</td>
<td>67/83</td>
<td>94/98</td>
</tr>
<tr>
<td>Horton et al. (2015); USA</td>
<td>Control (124) MCI (126) AD (67)</td>
<td>69.6 ± 7.9</td>
<td>67</td>
<td>15.3 ± 2.6 14.5 ± 2.8 15.2 ± 2.7</td>
<td>25/26 19/20</td>
<td>0.88 0.93 0.79 0.95</td>
<td>– – –</td>
<td>–</td>
<td>–</td>
<td>MoCA to MCI</td>
</tr>
<tr>
<td>Hsu et al. (2015); Taiwan</td>
<td>Control (4150) MCI (2311) Dementia (984)</td>
<td>80.9 ± 4.6</td>
<td>4.9</td>
<td>8.5 ± 5.5</td>
<td>60-79 years: 0.94 0.91 0.85 0.89</td>
<td>>85>85</td>
<td>>80>74</td>
<td>–</td>
<td>–</td>
<td>MoCA</td>
</tr>
<tr>
<td>Cecatto et al. (2014); Brazil</td>
<td>Control (39) MCI (45) AD (32)</td>
<td>71.8 ± 6.9</td>
<td>74.4</td>
<td>>9 years: 58.8</td>
<td>24/25 22/23</td>
<td>0.94 0.99 0.83 0.95</td>
<td>82.2/92.3</td>
<td>98.1/100.0</td>
<td>80.0/82.1</td>
<td>92.3/82.1</td>
</tr>
<tr>
<td>Kaya et al. (2014); Turkey</td>
<td>Control (246) MCI (114) AD (114)</td>
<td>73.6 ± 8.6</td>
<td>43.0</td>
<td>0.85 0.99 0.94 0.84 0.98</td>
<td>17/18 15/16</td>
<td>Elementary: 67/83</td>
<td>98/97</td>
<td>–</td>
<td>–</td>
<td>MoCA to MCI</td>
</tr>
<tr>
<td>Malek-Ahmadi et al. (2014); USA</td>
<td>Control (73) MCI (39) AD (34)</td>
<td>82.59 ± 7.67</td>
<td>45.2</td>
<td>14.59 ± 2.41</td>
<td>–</td>
<td>0.94 0.99 0.83 0.95</td>
<td>82.9/92.3</td>
<td>98.1/100.0</td>
<td>80.0/82.1</td>
<td>92.3/82.1</td>
</tr>
<tr>
<td>Yeung et al. (2014); Hong Kong</td>
<td>Control (49) MCI (93) Dementia (130)</td>
<td>73.5 ± 7.6</td>
<td>59.0</td>
<td>5.61 ± 4.27</td>
<td>21/22 18/19</td>
<td>0.85 0.97 0.86 0.99</td>
<td>82.8/73.5</td>
<td>92.3/91.8</td>
<td>78.5/91.6</td>
<td>95.4/89.8</td>
</tr>
<tr>
<td>STUDY, COUNTRY</td>
<td>POPULATION</td>
<td>AGE (YEARS) ± SD</td>
<td>FEMALE (%</td>
<td>EDUCATION (YEARS) – AVERAGE ± SD</td>
<td>EDUCATION (YEARS) – AVERAGE ± SD</td>
<td>CUT OFF MoCA – CONTROL vs MCI</td>
<td>CONTROL vs AD</td>
<td>ACCURACY OF MoCA (AUC) – CONTROL vs MCI</td>
<td>ACCURACY OF MMSE (AUC) – CONTROL vs MCI</td>
<td>ACCURACY OF MMSE (AUC) – CONTROL vs AD</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Zhou et al. (2014); China</td>
<td>Control (148); MCI (24)</td>
<td>67.7 ± 7.2</td>
<td>56.1</td>
<td>7.0 ± 0.5</td>
<td>20/21</td>
<td>0.72</td>
<td>0.74</td>
<td>75/62</td>
<td>–</td>
<td>83/56</td>
</tr>
<tr>
<td>Dong et al. (2013); Singapore</td>
<td>Control (128); MCI (83)</td>
<td>67.4 ± 4.8</td>
<td>43.0</td>
<td>7.9 ± 5.0</td>
<td>19/20</td>
<td>0.94</td>
<td>0.91</td>
<td>80/92</td>
<td>–</td>
<td>87/80</td>
</tr>
<tr>
<td>Freitas et al. (2013); Portugal</td>
<td>Control (180); MCI (90); AD (90)</td>
<td>71.3 ± 7.49</td>
<td>59.4</td>
<td>6.39 ± 4.31</td>
<td>21/22</td>
<td>0.86</td>
<td>0.75</td>
<td>81/77</td>
<td>88/98</td>
<td>67/72</td>
</tr>
<tr>
<td>Hu et al. (2013); China</td>
<td>Control (146); MCI (84); AD (72)</td>
<td>71.7 ± 5.6</td>
<td>57.4</td>
<td>13.4 ± 4.4</td>
<td>24/25</td>
<td>0.82</td>
<td>0.74</td>
<td>92/85</td>
<td>92/96</td>
<td>85/53</td>
</tr>
<tr>
<td>Freitas et al. (2012); Singapore</td>
<td>Control (33); MCI (61)</td>
<td>62.8 ± 9.9</td>
<td>55.2</td>
<td>7.2 ± 4.7</td>
<td>19/20</td>
<td>0.95</td>
<td>0.88</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sha et al. (2012); Israel</td>
<td>Control (80); MCI (74)</td>
<td>71.3 ± 4.6</td>
<td>46.2</td>
<td>Elementary: 1%; 22% High school: 5%; 40% Higher education: 49%; 38%</td>
<td>25/26</td>
<td>0.96</td>
<td>0.86</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Yu et al. (2012); China</td>
<td>Control (865); MCI (115)</td>
<td>70.40 ± 7.13</td>
<td>56.1</td>
<td>10.5 ± 5.3</td>
<td>21/22</td>
<td>0.71</td>
<td>0.7</td>
<td>68.7/63</td>
<td>50.4/74</td>
<td>–</td>
</tr>
<tr>
<td>Zhou et al. (2012); China</td>
<td>Control (37); MCI (42)</td>
<td>71.4 ± 5.2</td>
<td>70.0</td>
<td>13.4 ± 4.9</td>
<td>24/25</td>
<td>0.74</td>
<td>0.61</td>
<td>47/62</td>
<td>95/98</td>
<td>MoCA</td>
</tr>
<tr>
<td>Tsai et al. (2012); Taiwan</td>
<td>Control (38); MCI (71); AD (98)</td>
<td>77.7 ± 6.0</td>
<td>35.1</td>
<td>10.1 ± 4.4</td>
<td>23/24</td>
<td>0.91</td>
<td>0.99</td>
<td>92/78</td>
<td>98/95</td>
<td>–</td>
</tr>
<tr>
<td>Lifshitz et al. (2013); Israel</td>
<td>Control (140); MCI (126); AD (321)</td>
<td>71.2 ± 9.2</td>
<td>67.1</td>
<td>15.9 ± 3.0</td>
<td>28/29</td>
<td>0.89</td>
<td>0.99</td>
<td>84.79</td>
<td>94/96</td>
<td>82/73</td>
</tr>
<tr>
<td>Roalf et al. (2013); USA</td>
<td>Control (140); MCI (126); AD (321)</td>
<td>72.3 ± 8.1</td>
<td>49.2</td>
<td>14.9 ± 4.21</td>
<td>27/28</td>
<td>0.99</td>
<td>0.9</td>
<td>95.8/82</td>
<td>88.1/85</td>
<td>MoCA</td>
</tr>
<tr>
<td>Wang et al. (2013); Taiwan</td>
<td>Control (62); MCI (67)</td>
<td>78.19 ± 5.71</td>
<td>58.2</td>
<td>6.42 ± 4.72</td>
<td>21/22</td>
<td>0.95</td>
<td>0.92</td>
<td>95.8/82</td>
<td>92/96</td>
<td>85/53</td>
</tr>
<tr>
<td>STUDY</td>
<td>COUNTRY</td>
<td>POPULATION (N) SAMPLING</td>
<td>AGE (YEARS) ± SD</td>
<td>FEMALE (%)</td>
<td>EDUCATION (YEARS) ± SD</td>
<td>AVERAGE ± SD</td>
<td>MMSE CONTROL VS MCI</td>
<td>MMSE CONTROL VS DEMENTIA</td>
<td>MoCA CONTROL VS MCI</td>
<td>MoCA CONTROL VS AD</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Lu et al. (2011); China</td>
<td>Control (6283); MCI (1687)</td>
<td>72.0 ± 0.8; 75.1 ± 0.9</td>
<td>52.1; 56.3</td>
<td>6.7 ± 1.1; 3.5 ± 1.0</td>
<td>72.0 ± 0.8; 75.1 ± 0.9</td>
<td>52.1</td>
<td>6.7 ± 1.1</td>
<td>80.5/82.5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Guo et al. (2010); China</td>
<td>Control (186); MCI (121)</td>
<td>67.58 ± 6.87; 77.3 ± 6.3; 77.5 ± 6.0</td>
<td>72.0; 76.9; 63.0</td>
<td>12.3 ± 2.3; 11.5 ± 3.1; 12.1 ± 3.0</td>
<td>25/26; 25/26; 25/26</td>
<td>0.95; 0.99; 0.99</td>
<td>0.85; 0.86; 0.86</td>
<td>93/89; 100/89; 100/89</td>
<td>–/58; 97/89</td>
<td>–/58; 97/89</td>
</tr>
<tr>
<td>Fujisawa et al. (2010); Japan</td>
<td>Control (36); MCI (30); AD (30)</td>
<td>76.4 ± 3.3; 77.3 ± 6.3; 77.5 ± 6.0</td>
<td>72.0; 76.9; 63.0</td>
<td>12.3 ± 2.3; 11.5 ± 3.1; 12.1 ± 3.0</td>
<td>25/26; 25/26; 25/26</td>
<td>0.95; 0.99; 0.99</td>
<td>0.85; 0.86; 0.86</td>
<td>93/89; 100/89; 100/89</td>
<td>–/58; 97/89</td>
<td>–/58; 97/89</td>
</tr>
<tr>
<td>Lui et al. (2009); EUA</td>
<td>Control (74); MCI (24); AD (20)</td>
<td>78.9 ± 3.7; 78.9 ± 5.3; 79.9 ± 4.3</td>
<td>51.3; 38.0; 60.0</td>
<td>14.2 ± 2.5; 14.4 ± 4.1; 13.5 ± 2.6</td>
<td>23/24; 23/24; 23/24</td>
<td>0.97; 0.96; 0.95</td>
<td>0.76; 0.83; 0.85</td>
<td>96/95; 58/84; 58/84</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lee et al. (2008); South Korea</td>
<td>Control (115); MCI (37); AD (44)</td>
<td>69.1 ± 6.1; 71.3 ± 5.0; 70.4</td>
<td>70.4; 62.2; 52.3</td>
<td>8.0 ± 3.5; 8.3 ± 3.8; 7.9 ± 3.7</td>
<td>22/23; 22/23; 22/23</td>
<td>0.94; 0.98; 0.94</td>
<td>0.66; 0.87; 0.87</td>
<td>89/84; 98/84; 98/84</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nasreddine et al. (2009); Canada</td>
<td>Control (90); MCI (94); AD (93)</td>
<td>72.8 ± 7.0; 79.2 ± 6.3; 76.7 ± 8.8</td>
<td>60.0; 44.0; 59.0</td>
<td>13.3 ± 3.4; 12.3 ± 4.3; 10.0 ± 3.8</td>
<td>25/26; 25/26; 25/26</td>
<td>–</td>
<td>–</td>
<td>90/87; 100/87; 18/100</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

MCI: mild cognitive impairment; AD: Alzheimer’s disease; USA: United States of America; MoCA: Montreal Cognitive Assessment; Mini-Mental State Examination (MMSE); AUC: area under curve. Values referring to the MCI and AD groups.
AD, the National Institute of Neurological and Communicative Disorders and Stroke—Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) criteria (McKann et al., 1984) was used in most of the articles. Petersen’s criteria (2004) was the most used for the diagnosis of MCI.

The Area under the curve (AUC) calculated from the ROC curve, was used to compare the diagnostic accuracy of MoCA and MMSE. Of the 34 studies selected, 31 showed information regarding the accuracy of MoCA and MMSE in detecting MCI. Twenty-five articles (80.6%) showed superiority of MoCA to MMSE in discriminating individuals with mild cognitive impairment and no mild cognitive impairment (Cecato et al., 2014; Chen et al., 2016; Chu et al., 2015; Delgado et al., 2017; Dong et al., 2012; Freitas et al., 2013; Fujiwara et al., 2010; Guo et al., 2010; Horton et al., 2015; Hsu et al., 2015; Hu et al., 2013; Janelidze et al., 2017; Kaya et al., 2014; Lee et al., 2008; Lifshitz et al., 2012; Lu et al., 2011; Luis et al., 2009; Magierska et al., 2012; Mellor et al., 2016; Memória et al., 2013; Nasreddine et al., 2005; Roalf et al., 2013, 2017; Saleh et al., 2018; Tan et al., 2015; Tsai et al., 2012, 2016). In this group of articles are included the two studies with the most sample sizes of this review, with more than 7,000 elderly subjects each, with excellent methodological qualities, evaluated through QUADAS 2 tool (Lu et al., 2011; Tan et al., 2015). In these studies, a superiority of MoCA to MMSE in detecting MCI was shown. The remainder of the articles (19.4%) found similar accuracy between the two cognitive tests (Table 1).

On the other hand, 24 articles showed information regarding the discrimination between controlled individuals and individuals with dementia. Fourteen studies (58.3%), demonstrated similar accuracy between MoCA and MMSE in the detection of mild dementia, while the other 10 studies (41.7%) showed MoCA was superior to MMSE for this detection (Cecato et al., 2014; Delgado et al., 2017; Freitas et al., 2013; Fujiwara et al., 2010; Hsu et al., 2015; Janelidze et al., 2017; Lee et al., 2008; Luis et al., 2009; Wang et al., 2013).

The AUC varied from 0.71 to 0.99 for MoCA and 0.43 to 0.94 for MMSE, when evaluating the ability to distinguish between the MCI of cognitively healthy elderly individuals. However, when calculating to evaluate the discriminative power of cognitively healthy elderly individuals from those with mild Alzheimer’s Disease, the AUC of MoCA varied from 0.87 to 0.99, while the AUC of MMSE varied from 0.67 to 0.99. An analysis of Table 1, demonstrates that the cut-off point varies within the studies.

The AUC mean value for MoCA was significantly larger compared to the MMSE in discriminating MCI from control [0.883 (CI 95% 0.855–0.912) vs MMSE 0.780 (CI 95% 0.740–0.820) \(p < 0.01 \), obtained through the Mann-Whitney test]. The AUC mean value for MoCA was similar to the MMSE in discriminating AD from control [0.957 (CI 95% 0.939–0.974) vs. 0.917 (CI95% 0.878–0.956) \(p = 0.125 \)]. When conducting a comparison of the accuracy of MoCA and MMSE in detecting MCI and AD using the AUC mean value considered by the sampling size in the selected studies of this systematic review, the superiority of MoCA to MMSE in detecting MCI and AD were confirmed. The good accuracy for both test in detecting AD was also confirmed [0.839 (CI 95% 0.823–0.855) vs. 0.821 (CI 95% 0.790–0.852), \(p = 0.328 \)] (Figure 2).

When evaluating the quality of the studies included in this review through the QUADAS-2 tool, it is shown that the studies for the most part, have an excellent applicability, and a low risk of bias (Supplementary Table 1 and Figure 3). Only one study was considered to have a high risk of bias due...
to the way the patients were selected and consequently, low applicability in Patient Selection. In three studies, the gold standard used was unclear (Supplementary Table 1 and Figure 3). All the studies presented a low risk of bias and high applicability regarding to the index test of the QUADAS-2 tool.

Discussion

This systematic review aimed to evaluate the current state of the subject and assess which of the tests has been shown to be more accurate in tracking MCI and AD in elderly individuals. In this review, 34 articles which analyzed the ability of MoCA and MMSE in distinguishing MCI and AD among the healthy elderly population were included. The cut-off point of MoCA varied within the studies, from 13/14, in the elderly with low education (Lu et al., 2011), to 28/29, in detecting MCI, in a study conducted in the U.S.A. (Roalf et al., 2013). The most frequent cut-off point to detect MCI was 21/22 and 19/20 to detect AD. In general terms, in the studies conducted on elderly individuals with low formal education, lower values of the cut-off point were found to attain a more accurate diagnosis (Dong et al., 2012, 2013; Matías-Guiu et al., 2017; Yeung et al., 2014; Zhou et al., 2014).

It is important to mention that the four studies that presented results stratified per education found lower cut-off points for elderly individuals who have lower formal education, highlighting the importance of considering the level of education of the patients when evaluating their cognitive performance (Chen et al., 2016; Kaya et al., 2014; Lu et al., 2011; Mellor et al., 2016). In addition, it is shown that a lower accuracy in MMSE was found in the elderly group with higher formal education. This fact is due to the ceiling effect that occurs in elderly individuals with higher education when administering MMSE. Even those with the diagnosis of MCI and mild AD are able to achieve performance similar to cognitively healthy elderly individuals, thus decreasing the accuracy of the test (Chen et al., 2016; Mellor et al., 2016). This fact was more evident in the Mellor and collaborators (2016) studies, in which the AUC of MMSE decreased from 0.85 to 0.72 — accuracy detection of MCI — and from 0.97 to 0.72 — accuracy detection of mild AD — when compared to elderly individuals who had ≤6 years of formal education to those who had ≥10 years of formal education, respectively.

The Yeung and collaborators (2014) study was the only study, among the studies of the groups that evaluated the three cognitive groups (control, MCI, and mild AD), in which the MoCA accuracy was similar to MMSE in the detection of MCI and also

Figure 3. Evaluation of the quality of the studies included in the systematic review through Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. A – Risk of Bias; B – Applicability.
in the detection of mild AD. This is the study with elderly individuals who had the lowest formal education, among the included articles in the current literature review. Therefore, the absence of the superiority of MoCA in this study was probably due to the occurrence of the floor effect: cognitively healthy elderly individuals who had low formal education showed bad performance in the test, similar to elderly individuals with MCI and mild AD, consequently with a low accuracy in distinguishing between controlled individuals from those with cognitive impairment.

It is interesting to observe that the values of the cut-off points for MCI were superior to those defined to determine AD in practically all the studies that evaluated the detection of MCI and AD (Cecato et al., 2014; Chu et al., 2015; Delgado et al., 2017; Freitas et al., 2013; Horton et al., 2015; Hu et al., 2013; Kaya et al., 2014; Mellor et al., 2016; Memória et al., 2013; Roalf et al., 2013, 2017; Saleh et al., 2018; Tan et al., 2015; Tsai et al., 2012, 2016; Yeung et al., 2014). This fact is probably due to having higher cut-off points, in other words, stricter to prevent possible MCI cases from being considered normal. Thus, the higher cut-off points increase the sensitivity of the tracking tests.

It is important to highlight that since tracking tests are being used, the most important component of accuracy to be evaluated in these tests is sensitivity — naturally, without forgetting the remainder properties of the test: specificity and positive and negative predictive value. Therefore, when the sensitivity of the cognitive tests is observed in a more detailed manner, the superiority of MoCA to MMSE becomes more apparent. This is more likely due to MoCA containing more complex items, such as cube drawing and clock drawing (Table 2). In addition, the time needed to evaluate the delayed recall is longer in MoCA, making the test more difficult, with a higher percentage of error for the elderly with impaired cognitive functions and consequently, higher sensitivity in this tracking tool.

The Chinese study of Tan and collaborators (2015), which used the second highest sample size among the studies of this review ($n = 7,445$), showed cut-off points stratified by age. The values decreased with the increase in age, with the MoCA cut-off points at 25/26 and 24/25 for elderly individuals between 60 and 79 years of age, 23/24 and 19/20 for the elderly in their 90s, for the detection of MCI and AD, respectively. Thus, the role age has in the cognitive performance of MoCA is noticeable.

Conclusion
The Chinese study of Tan and collaborators (2015), which used the second highest sample size among the studies of this review ($n = 7,445$), showed cut-off points stratified by age. The values decreased with the increase in age, with the MoCA cut-off points at 25/26 and 24/25 for elderly individuals between 60 and 79 years of age, 23/24 and 19/20 for the elderly in their 90s, for the detection of MCI and AD, respectively. Thus, the role age has in the cognitive performance of MoCA is noticeable.

<table>
<thead>
<tr>
<th>COGNITIVE FUNCTION</th>
<th>TASK</th>
<th>MoCA (PONTUATION)</th>
<th>MMSE (PONTUATION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visuospatial abilities</td>
<td>Copy of three-dimensional cube</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Clock drawing</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Copy of pentagons</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Executive functions</td>
<td>Trail Making B</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Phonemic fluency</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Abstraction</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Attention, concentration, and working memory</td>
<td>Digits forward and backward</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Tapping with hand at letter A</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Serial subtraction</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Language</td>
<td>Repetition</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Naming</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Comprehension (3-stage command)</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Reading</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Writing</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Memory</td>
<td>Learning</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Delayed recall</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Orientation</td>
<td>Orientation to time</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Orientation to place</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2. Distribution of the scores of The Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE), according to the evaluated cognitive function.
superiority to MMSE in identifying MCI, and both tests are accurate in detecting Alzheimer’s Disease, with MoCA presenting a tendency towards a greater ability to achieve this diagnostic tracking, but without statistical difference. The evaluation of the accuracy of these cognitive tracking tools in the populations, as well as choosing the test with the highest diagnostic accuracy are extremely relevant where these tests will be used to facilitate the process of diagnosing impaired cognition.

Hence, it is proposed that MoCA be chosen in relation to MMSE as the test for cognitive tracking in the elderly, mainly for the tracking of MCI. Additionally, it is proposed that the cut-off points be defined considering the formal education of the population studied, aiming at a more accurate tracking of the elderly at risk of developing a decline in cognition and early onset dementia, proportionally. Hence, an early diagnosis brings more benefits to the elderly, their family, and to society.

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Description of authors’ roles

T. Pinto, M. Costa, and R. Ximenes developed the concept of the paper. T. Pinto performed the statistical analyses. All authors participated in the interpretation of the data and the writing of the paper. T. Pinto and R. Ximenes coordinated the writing. All authors have approved the final paper.

Acknowledgments

The authors received no financial support for the research, authorship and/or publication of this article.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/S1041610218001370

References

Luis, C. A., Keegan, A. P. and Mullan, M. (2009). Cross validation of the Montreal Cognitive Assessment in community dwelling older adults residing in the...

