Does the food we eat, and its processing, impact our hormonal balance and cancer risk?

Deborah J. Clegg, PhD

Vice President for Research
Professor, Internal Medicine
Texas Tech University Health Sciences Center
El Paso, TX
Origin of Estrogens

Estrogen Production in the Body

Female
- Breasts
- Pituitary Gland
- Adrenal Glands
- Skin and Fat Tissue
- Ovaries and Placenta

Male
- Liver
- Adrenal Glands
- Fat Tissue
- Testes

Chemical Reactions
- Aromatase
 - Androstenedione → Estrone
 - Testosterone → Estradiol

Aromatase Expression in Male Organs and Tissues
- Testis
- Adipose tissue
- Muscle
 - Brain
 - Liver
 - Breast
 - Skin
 - Endothelium
 - Gastric parietal cells
Function of Endogenous Estrogens

Estrogen action
- Energy balance
- Adipose health
- β-cell function
 - Survival
- Insulin sensitivity
 - Lipid homeostasis
- Insulin sensitivity
 - Energy homeostasis
- Macrophage polarization

Estrogen deficiency/resistance
- Obesity
- Obesity
 - Adipose inflammation
 - Altered secretory profile
- β-cell dysfunction
 - Type 2 diabetes
- Insulin resistance
 - Fatty liver
- Insulin resistance
 - Impaired glucose homeostasis
- Inflammation
 - Adiposity
 - Atherosclerosis
What are the Similarities Between Phytoestrogens and Xenoestrogens?

• Phytoestrogens and Xenoestrogens are two foreign estrogens that are produced outside of the human body.

• They exert *estrogen-like* activity.

• Both compounds have wide applications as pharmaceuticals.....

• Both compounds may have beneficial and adverse effects.....
Phytoestrogens

WHAT:
Phytoestrogens are plant nutrients found in soy products, grains, beans, and some fruits and vegetables. When consumed regularly during childhood, phytoestrogen consumption is linked to a decreased risk of breast cancer.

FOUND:
Phytoestrogens are found in foods such as whole grains, dried beans, peas, fruits, broccoli, cauliflower, and especially in many soy products.

SCIENCE:
Overall, phytoestrogen consumption is believed to be protective against breast cancer. But, some research suggests women with HER-2-positive tumors and pre-menopausal women at high risk should avoid them.

TOP TIPS:
It is best to avoid highly processed soy. Limit intake of concentrated isoflavones, including genistein, in favor of less-processed options such as tofu, edamame and tempeh.
Similarity Between Estrogens and Phytoestrogens

17-β-estradiol

Genistein

Daidzein
Examples of the Most Common Dietary Phytoestrogens

Isoflavones commonly found in soy
- genistein and daidzein are widely marketed as dietary supplements

Coumestans commonly found in broccoli and sprouts
- have estrogenic activity that is 30 to 100 times greater than that of isoflavones

Lignans large group of low molecular weight polyphenols
- found in plants, particularly seeds, whole grains, and vegetables

Effects of Dietary Phytoestrogens on Hormones throughout a Human Lifespan: *Nutrients*. doi.org/10.3390/nu12082456
Similar BUT *Different* Binding Affinity to the Estrogen Receptors with Phytoestrogens
Location of Estrogen Receptors
Phytoestrogen Binding Affinity for Estrogen Receptors

- Distribution of oestrogen receptors
- Concentration of phytoestrogen
- Ethnicity

Phytoestrogens

ER-α
(Predominant in tumor cells)
Agonist

ER-β
(Predominant in normal mammary epithelium)
Antagonistic

Higher affinity
Similar BUT **Different** Binding Activity of the Estrogen Receptors with Phytoestrogens

Phytoestrogens can also activate:
- Serotonergic receptors
- Insulin-like growth factors receptors
- Free radical binding and modification of tyrosine kinases
- Cycle adenosine monophosphate (cAMP)
- Phosphatidylinositol-3 kinase (PI3K)
- DNA methylation
- Affect histone and RNA expression
Phytoestrogen Activation of Estrogen Receptors

Potential Anti-Cancer Mechanisms of Phytoestrogens

Phytoestrogens are able to inhibit mitogenic pathways via ERβ or PI3K/MAPK, which in turn inhibit cancer cell proliferation and invasion.

Phytoestrogens can cause epigenetic modifications, such as demethylation of CpG islands within the promoters of tumor suppressor genes which can contribute to cell growth arrest.

Phytoestrogens can inhibit proteasomes as a mechanism which may decrease cancer cell survival.

Potential Positive and Negative Impact of Phytoestrogens

• Phytoestrogens have been thought to lower the risk of:
 • Osteoporosis
 • Cardiometabolic diseases
 • Cognitive dysfunction
 • Breast and prostate cancer
 • Menopausal symptoms

• Phytoestrogens are also described as *endocrine disruptors*

• Beneficial vs harmful effects of phytoestrogens depend on:
 • Exposure (type, amount consumed, bioavailability)
 • Ethnicity
 • Hormonal status (age and physiological condition)
 • Health status of the consumer
Potential Health Outcomes of Phytoestrogens

- **Thyroids**
 - T3, T4, TPO, PE

- **Liver**
 - SHBG, PE

- **Ovaries**
 - Estrogen, Progesterone, PE

- **Bones**
 - IGF-I, OC, PE

- **Hypothalamic-Pituitary-Gonadal Axis**
 - Phytoestrogens affect the secretion of GnRH
 - Impairing biofeedback and hormonal regulations

- **Pancreas**

- **Adipose Tissues**

- **Prostate**

Absorption, metabolism, and excretion of phytoestrogens.

- Daidzin, contained in soy products, is hydrolyzed by the bacterial beta-glucosidase generating aglycones (primary metabolites).

- Colonic microflora is capable of transforming aglycones into secondary metabolites and bacterial end-products that are eliminated with feces.

- Both primary and secondary metabolites undergo either glucuronidation or sulfidation by intestinal epithelial cells and hepatocytes.

- Once in the bloodstream, these conjugated products reach target tissues and later on are excreted in urine or bile.

- In the bile, they can be absorbed again by the intestine (enterohepatic circulation) or are excreted in feces as bacterial end-products or unconjugated forms.

Nutrients 2019; https://doi.org/10.3390/nu11081709
Where Do Phytoestrogens Come From?

ESTROGENS IN MEAT

Even with growth hormone and antibiotic use in “Traditional Steak,” the hormone levels in meat is nowhere compared to plant-based foods.

Hormone levels in food:

- **Traditional Steak** (12 oz): 7.6 ng
- **Natural Steak** (12 oz): 5.2 ng
- **3 oz. Tofu**: 19,000,000 ng
- **Raw Spinach**: 27,000,000 ng
- **Spinach Dressing**: 3,928 ng
- **Baked Potato**: 375 ng

*3A-Hydroxysterolone
* Estrogenic activity

*Natural steak is defined as animals with no use of antibiotics or growth hormone injections.
Where Do Phytoestrogens Come From?
Summary of the Effects of Dietary Phytoestrogens at Different Life Stages

Association between dietary phytoestrogens and endocrine biomarkers is **inconclusive**. The disparity in results may be due to:

- Differences in type and concentration of compound
- Phytoestrogen bioavailability
- Circulating vs urinary excretion of metabolites
- Most studies done in postmenopausal women
- Little known about their impact during pregnancy
- Impact of phytoestrogens on pubertal development poorly studied

Xenoestrogens

Chronology of Knowledge of Xenoestrogens

1900
- Discovery of hormones as chemical messengers

1920
- Infertility in pigs fed mouldy grain

1940
- Infertility in sheep grazing on certain clovers

Identification of hormone binding to receptor

1960
- “Silent Spring” published
- DES identified a transplacental carcinogen
- DDT ban in the USA

1980
- Cloning of receptor genes
- Wingspread meeting, USA – first use of term “endocrine disruptor”
- “Our Stolen Future” published
- Weybridge meeting, EU

2000
- REACH law, EU
- Endocrine Society statement
- WHO/UNEP report

2018
- Reports of endocrine disruption in girls across the globe
- Reports of endocrine disruption in humans across the globe
- Regulatory response to EDCs

Current Opinion in Endocrine and Metabolic Research
Dichlorodiphenyldichloroethylene (DDE) and other organochlorine pesticides found in maternal blood and placental tissue represents a dangerous prenatal exposure hazard for fetuses, due to chronic bioaccumulation and poor elimination.

DDE has a higher affinity and lipophilicity and is not easily catabolized by organisms.

Dichlorodiphenyltrichloroethane (DDT), stimulates membrane estrogen receptors and plays an important role in the propagation of DDT-induced apoptosis during the early stages of neural development.

Lake Apopka in Florida is seriously affected by DDT and its metabolites.

Male crocodiles have a micropenis, various abnormalities of the testes due to exposure of DDT and DDE.
Where do Xenoestrogens Come From?

• As endocrine disruptors, XEs can be either synthetic or natural chemical compounds derived from sources, including diet, pesticides, cosmetics, plastics, plants, industrial byproducts, metals, and medications.

• Xenoestrogens mimick the chemical structure of naturally occurring estrogen compounds even without structural similarity to estrogens.

• Xenoestrogens exert effects via various pathways other than classical ER-signaling.

• Xenoestrogens can weakly activate compounds that interfere with the hormonal balance.

• Xenoestrogens exert tissue-specific and non-genomic actions when estrogen concentrations are relatively low.
Routes of Exposure to Endocrine Disrupting Chemicals (EDC)

- You buy items containing EDCs
- You use them in your home
- The EDCs in these chemicals contaminate your wastewater
- Fish are damaged and die due to the EDCs and people downstream may be exposed
- The EDCs are released into the Potomac
- The DC Blue Plains wastewater plant cannot filter out EDCs
Critical Periods of Xenoestrogen Activity

Term Window

- Period of developmental susceptibility during which the developing organism can be altered by environmental factors resulting in structural, functional, and/or cellular changes
- Alterations during these ‘windows’ identified at late stages
Sites of Xenoestrogen Activity

- Xenoestrogens have estrogenicity or anti-estrogeneicity
- Can bind to receptors within the organism
- Manipulate differentiation and modulation of cell proliferation
- Impact apoptosis, cytokine production, and cell cycle progression

*** All of which should be controlled by the endogenous 17β-estradiol

Xenoestrogens Impact on Neurological Disorders

- Polychlorinated Biphenyls (PCBs) have been shown to cause neurological diseases to include:
 - long-term neurological deficits
 - problems with learning and memory function
 - slower reaction time
 - reduced color discrimination, and constricted visual fields
 - diminished vocabulary and verbal recall (Crinnion, 2011)

- Xenoestrogens such as DDT have been shown to interfere with neural development in pregnancy

- Children who have been exposed to PCBs during pregnancy through maternal consumption of fish have been shown to exhibit problems with intellectual functioning

- Children who have been exposed to PCBs have a poorer gross motor function and reduced visual recognition memory
Endocrine Disrupting Chemicals (EDC) and Their Impact on Female Reproduction

- Xenoestrogens interfere with the development of the female reproductive tract by competitively inhibiting estrogens and selectively binding to estrogen receptors.

- Nine PCBs, three pesticides, a furan, and two phthalates slowly damage the follicular pool and are associated with earlier ages of menopause.

- Xenoestrogens can lead to the formation of cysts in ovaries. This condition is known as polycystic ovary syndrome (PCOS) (Götz et al., 2001).

- Adolescents who resided in an area of substantial industrial development and PCB exposure underwent earlier menarche and thelarche than their unexposed peers.
Xenoestrogens and Men’s Health

• Xenoestrogens increase the risk of prostate cancer by disrupting endocrine function in men and either cause or accelerate the development of prostate cancer (Prins, 2008)
 • Xenoestrogens which enhance prostate cancer include PCBs, inorganic arsenic, ultraviolet filters, BPA, and cadmium
 • Xenoestrogens exacerbate the growth of prostate cancer cells by interfering with the signaling actions of estrogen (Watson et al., 2019)

• There are reductions in testosterone levels which occur during aging in men resulting in increasing levels of estrogen which may be impacted by xenoestrogens

• Xenoestrogens have been found to be responsible for the decrease in both the quantity and quality of human sperm in the last five decades (Götz et al., 2001)

• Xenoestrogens impair the development of the testes and the male reproductive tract
Xenoestrogens have been shown to negatively impact the development of a fetus (Paterni et al., 2017).

Exposure to xenoestrogens has been shown to have cancer-causing and mutating effects on the cells of a fetus (Palmlund, 1996).

Exposure to xenoestrogens while a woman is pregnant leads to changes in the genetic sequence in the placenta which negatively impacts fetal growth and development (Vilahur et al., 2014).
How Can You Minimize Your Exposure to Xenoestrogens?

- Avoid cosmetic products that have toxic chemicals and xenoestrogens

- In particular, avoid parabens and phthalates as the cosmetics industry commonly uses these

- Use glass and/or ceramic ware to store food at home instead of plastic containers

- Avoid microwaving plastic containers which cause BPA leaching to occur

- Avoid placing your plastic bottles or containers in direct sunlight

- Limit your intake of fish, mainly canned fish which is high in mercury and PCBs

- Opt for pesticide-free fruits and vegetables where possible - if not, thoroughly wash your fruits and vegetables immediately after purchasing them
Xenoestrogens and the Literature

Research XEs has limitations because it is a moral hazard to conduct studies regarding the harmful effects of XEs on humans.

Many of the studies reported in the literature are observational and in animasl, thus limiting the application of the results to human.

There are few, if any, randomized controlled trials found on the topic of XEs.

Many of the beneficial and harmful effects of XEs, which have been accumulated in organisms, are dose-dependent and time-dependent, which may not be observed during a shorter period.

More experiments are required to study the substances in the environment and in isolation.
Selective estrogen receptor modulators (SERMs)

Tamoxifen, Raloxifene

These are drugs that interact with estrogen receptors but have different effects on different tissues. They can show agonism or antagonism depending upon the tissue type.
Origin of Estrogens and Phytoestrogens
Where do Phytoestrogens/Xenoestrogens Come From?
Similar BUT *Different* Binding Affinity to the Estrogen Receptors with Phytoestrogens
Function of Endogenous Estrogens

ESTROGEN ACTION

- Breast development
- Increase cholesterol in bile
- Increase fat store
- Maturation and maintenance of bone mineral density
- Muscle strength
- Preventing atherosclerosis
- Libido
- Memory
- Mental health
- Ovulation
- Uterus lining
- Vaginal lubrication
- Stimulate endometrial growth
Similarity Between Estrogens and Phytoestrogens

Types of Estrogen

There are two main types of estrogen hormones, steroidal and non-steroidal.

Steroidal:
- Estrone (E1)
- Estradiol (E2)
- Estriol (E3)

Non-steroidal:
- Natural Xenoestrogens
- Phytoestrogens
- Mycoestrogens
- Synthetic Xenoestrogens

Estrogen made by the body:
- Estrone (E1):
 Made in ovaries. Only estrogen hormone the body produces after menopause (in reduced amounts).
- Estradiol (E2):
 Made in ovaries during reproductive years.
- Estriol (E3):
 Produced by placenta during pregnancy.
- Estetrol (E4):
 Produced by fetus during pregnancy.

Estrogen made outside the body:
- Synthetic estrogens:
 Produced for medical use, like in birth control pills.
- Phytoestrogens:
 Found in plants, like soybeans.
- Xenoestrogens:
 Pollutants from man-made products that act as endocrine disrupting agents.
Estrogen Pharmacokinetics

- Estrogens and androgens are only biologically active in their free form
- Estradiol is extensively bound to SHBG
- SHBG binds to estrogens and androgens and affects steroidal activity
- Only a small fraction of estrogens are free and not bound
- *In vitro* studies suggest isoflavonoids stimulate the synthesis of SHBG by liver cancer cells
- Human data inconclusive
- Phytoestrogens inhibit aromatase and other enzyme synthesis of steroid hormones

Phytoestrogen Mechanisms

Anti-Cancer Impact
Dietary Phytoestrogens are digested in the small Intestine where they are poorly absorbed. Those that reach the liver are conjugated and circulate in the plasma until excreted in the urine.
Potential Functions of Phytoestrogens
Oral Estrogen Bioavailability

![Graph showing Oral Estradiol Valerate 2 mg bioavailability](image-url)

- **Estradiol valerate 2 mg oral single**
 - Time (hours): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
 - Estradiol and estrone levels in pg/mL

![Graph showing Estrone Sulfate levels](image-url)

- Time (hours): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- Estrone sulfate levels in pg/mL

Legend
- Red: Estradiol
- Purple: Estrone
- Blue: Estrone sulfate
Environment and Food Processing Impact Hormonal Balance

doi:10.1080/10408398.2015.1126547
Xenoestrogens and *Metabolic* Effects in Men & Women

• Xenoestrogens are an independent risk factor for systemic inflammation and cardiovascular disease.

• Higher xenoestrogen levels are correlated with *metabolic dysfunction*.

• Xenoestrogens such as aldrin, lindane, and DDE accumulate preferentially in humans
 • Accelerate the accumulation of fat, both inside and outside the blood vessels
 • Enhance the development of *obesity*
 • Increase coronary artery disease due to the accumulation of fatty plaque (Teixeira et al., 2015)