**Introduction**

Recent studies indicate gut microbiota as a key modulator of peripheral and central sensitization pathways of chronic pain through gut microbiota-derived mediators (GMDM). These pathways include the activation of microglia and infiltration of immune cells. Thus, dietary intervention with changes in GMDM may represent a new therapeutic strategy for chronic pain. Ginger (Zingiber officinale Roscoe), an analgesic and anti-inflammatory agent, poses great potential. This study evaluates the effects of ginger root extract (GRE) on GMDM in neuropathic pain models.

**Results and Discussion**

No statistically significant differences were observed in these 3 pathways between the sham and the SNL control groups (p>0.05). PCA of four groups demonstrates less variance and good reproducibility between the 4 cohorts while also demonstrating significant differences between treated groups and the sham/control groups (Figure 1). Significant differences were observed between the ginger-supplemented groups (SNL+GEG and SNL+SEG) and the SNL control for fecal metabolites in the AAAB pathway (L-Tryptophan, L-Tyrosine, L-Phenylalanine) (Figure 2) and the BCAAB pathways (2-Oxoglutarate, 4-Methyl-2-oxopentanoate, L-Glutamate, L-Valine) (Figure 3). Further analysis of fecal functional data is ongoing. These significant differences due to ginger supplementation may be beneficial signs for neuropathic pain relief.

**Methods**

**Animal Treatments**

- Sixteen male rats were divided into four groups and the study period was 30 days.
  - Sham group: received sham surgery and fed AIN-93G diet.
  - SNL group: received spinal nerve ligation (SNL) and fed AIN-93G diet.
  - SNL+GEG group: received SNL and fed gingerol-enriched ginger (0.75%) in AIN-93G diet.
  - SNL+SEG group: received SNL and fed shogaols-enriched ginger (0.75%) in AIN-93 diet.

**Sample Collection/Data analysis**

- Fecal samples were collected using metabolic cages.
- Metabolites from 50mg homogenized fecal samples were extracted and centrifuged.
- Aqueous phase was processed for untargeted metabolomics analysis using LC-MS/MS.
- Principal Component Analysis (PCA) was performed to assess the different profiles of the metabolites.
- Data were analyzed using compound discovery software (3.1) to identify and quantify metabolites.

**Key Pathways Analyzed**

- Anaerobic aromatic compound degradation (AADC)
- Aromatic amino acid biosynthesis (AAAB)
- Branched chain amino acid biosynthesis (BCAAB)

---

**Figure 1:** PCA Results comparing the four groups: Sham, SNL, SNL+GEG, SNL+SEG, and SNL. We observed significant differences between treatment and control groups.

**Figure 2:** Aromatic Amino Acid Biosynthesis Superpathway. Highlighted are compounds that demonstrated fold changes between the SNL+GEG and SNL groups. Beside these are the P-values for each differences observed.

**Figure 3:** Branched Chain Amino Acid Biosynthesis Superpathway. Highlighted are compounds with fold changes between SNL+GEG and SNL. Beside these are the P-values for each differences observed.