Glaucoma

Ted W. Reid, Ph.D.

Ciliary Body

- Produces fluid that is pumped into the eye
- This fluid is important in maintaining the pressure of the eye.
- The pressure of a normal eye is 16mm Hg.

The Limbus - Trabecular Meshwork

What is glaucoma

What is glaucoma

 A disease of the eye which causes a gradual degeneration of retinal ganglion cells (cells going to the brain)

What is glaucoma

- A disease of the eye which causes a gradual degeneration of retinal ganglion cells (cells going to the brain)
- A disease where the primary risk factor is an increase in pressure of the eye

What is glaucoma

- A disease of the eye which causes a gradual degeneration of retinal ganglion cells (cells going to the brain)
- A disease where the primary risk factor is an increase in pressure of the eye
- A disease that is treated with drugs that lower eye pressure

What is glaucoma

- A disease of the eye which causes a gradual degeneration of retinal ganglion cells (cells going to the brain)
- A disease where the primary risk factor is an increase in pressure of the eye
- A disease that is treated with drugs that lower eye pressure
- A disease that is treated with surgery to lower eye pressure

What is glaucoma

- A disease of the eye which causes a gradual degeneration of retinal ganglion cells (cells going to the brain)
- A disease where the primary risk factor is an increase in pressure of the eye
- A disease that is treated with drugs that lower eye pressure
- A disease that is treated with surgery to lower eye pressure
- A disease that is one of the leading causes of blindness

How does Glaucoma cause blindness

Current thinking is that the pressure causes glaucoma

How does Glaucoma cause blindness

- Current thinking is that the pressure causes glaucoma
- How does the pressure cause glaucoma?

How does Glaucoma cause blindness

- Current thinking is that the pressure causes glaucoma
- How does the pressure cause glaucoma
- It restricts the blood flow to the retina

How does Glaucoma cause blindness

- Current thinking is that the pressure causes glaucoma
- How does the pressure cause glaucoma
- It restricts the blood flow to the retina
- Is this the whole story?

Old Results

- Some people with no increase in pressure experience the same destruction to their retina.
- Progressive loss of nerve cells can continue in patients whose IOP is controlled.

High IOP a Stress Factor

Stress is known to trigger autoimmune responses.

High IOP a Stress Factor

- Stress is known to trigger autoimmune responses.
- What is autoimmune it is when our antibodies start to react with our own body.

High IOP a Stress Factor

- Stress is known to trigger autoimmune responses.
- What is autoimmune it is when our antibodies start to react with our own body.
- In patients with glaucoma they find antibodies against their own heat shock proteins

What is a heat shock protein?

• It is a family of proteins in our body.

What is a heat shock protein?

- It is a family of proteins in our body.
- They are made in cells under different kinds of stress (heat, cold, UV light and wound healing).

What is a heat shock protein?

- It is a family of proteins in our body.
- They are made in cells under different kinds of stress (heat, cold, UV light and wound healing).
- They help to heal proteins damaged by stress.

What is a heat shock protein?

- It is a family of proteins in our body.
- They are made in cells under different kinds of stress (heat, cold, UV light and wound healing).
- They help to heal proteins damaged by stress.
- They are found in all species even bacteria.

Authors Hypothesis

• High pressure somehow produces antibodies to heat shock proteins (HSP)

Authors Hypothesis

- High pressure somehow produces antibodies to heat shock proteins (HSP)
- Human glaucoma patients are found to have antibodies to their HSP

Authors Hypothesis

- High pressure somehow produces antibodies to heat shock proteins (HSP)
- Human glaucoma patients are found to have antibodies to their HSP
- These antibodies are also against HSP from bacteria.

Authors Hypothesis

- High pressure somehow produces antibodies to heat shock proteins (HSP)
- Human glaucoma patients are found to have antibodies to their HSP
- These antibodies are also against HSP from bacteria.
- These antibodies start to attack the patient's own HSP

Where do these antibodies come from

• HSP from bacteria are very similar to our HSP

Where do these antibodies come from

- HSP from bacteria are very similar to our HSP
- The antibodies may have been produced in the past against bacteria in our body.

Where do these antibodies come from

- HSP from bacteria are very similar to our HSP
- The antibodies may have been produced in the past against bacteria in our body.
- IOP stress produces HSP in our eye.

Where do these antibodies come from

- HSP from bacteria are very similar to our HSP
- The antibodies may have been produced in the past against bacteria in our body.
- IOP stress produces HSP in our eye.
- The IOP also damages the blood retinal barrier

Where do these antibodies come from

- HSP from bacteria are very similar to our HSP
- The antibodies may have been produced in the past against bacteria in our body.
- IOP stress produces HSP in our eye.
- The IOP also damages the blood retinal barrier
- This allows the antibodies to the bacteria to get into the eye.

Where do these antibodies come from

- HSP from bacteria are very similar to our HSP
- The antibodies may have been produced in the past against bacteria in our body.
- IOP stress produces HSP in our eye.
- The IOP also damages the blood retinal barrier
- This allows the antibodies to the bacteria to get into the eye.
- The antibodies interact with T-cells

The authors also showed:

• High IOP allowed T-cells to penetrate the blood-retinal barrier

The authors also showed:

- High IOP allowed T-cells to penetrate the blood-retinal barrier
- Inducing high IOP in mice with no T-cells showed little damage and no progression of disease after pressure was returned to normal.

Take Home Message

- Probably the role of the increased pressure in the eye is to cause damage to the tight junctions of the retina.
- Damage allows the immune molecules to enter the retina.
- These immune molecules can attach molecules in the retina that are similar to those found on bacteria.
- This causes a slow destruction of the retina.

Take Home Message

• New treatments should be focused on this immune response.