

Introduction

Over 17.5% of drug-related emergency department visits are attributed to anticoagulants.¹ As the use of direct oral anticoagulants (DOACs) rises, they are frequently prescribed inappropriately which further increases adverse events.² Education and follow-up requirements for patients receiving DOACs are not clearly defined. Furthermore, it is unknown if convenience associated with their use has de-emphasized the importance of specific education.

Pharmacy-driven services in the ambulatory care setting improve adherence, medication access, and laboratory monitoring.³⁻⁴ The extent of benefit obtained from the education provided as part of these services it is not understood.

Objectives

Primary objective:

1. Compare anticoagulant knowledge tool (AKT) scores in patients prescribed a DOAC versus warfarin

Secondary objectives:

- 1. Characterize factors affecting patient understanding of key anticoagulation concepts and identify areas to improve prescribing
- Determine whether a pharmacist-driven DOAC service improves anticoagulant knowledge and other outcomes

• Fisher's Exact to assess differences in categorical outcomes

Implementation of a Direct Oral Anticoagulant **Knowledge Assessment and Education Service**

Erica P. Dominguez, Pharm.D.,¹ Rodney B. Young, M.D.,² Eric J. MacLaughlin, Pharm.D.¹

Brandi K. Dahl, Pharm.D.,¹ Krystal K. Haase, Pharm.D.,¹ Maegan M. Whitworth, Pharm.D.,¹ Les P. Covington, Pharm.D.,¹ Texas Tech University Health Sciences Center (TTUHSC) Jerry H. Hodge School of Pharmacy¹ and TTUHSC School of Medicine² Amarillo, TX

Results

Table 1. Baseline Demographics

Demographic	Warfarin Users (n= 20)	DOAC Users (n= 40)	
Age (yrs)*	64.8 ± 12.7	70.1 ± 12.8	
Gender			
Male (%)	40.0	32.5	
Race			
Caucasian (%)	90.0	95.0	
African American (%)	5.0	2.5	
Hispanic (%)	5.0	2.5	
Insured			
Self-Pay (%)	0.0	0.0	
Medicare (%)	75.0	65.0	
Medicaid (%)	0.0	5.0	
Private (%)	25.0	15.0	
CHA ₂ DS ₂ -VASc ^{*†}	4 ± 1.1	4 ± 1.1	
HASBLED*	1.4 ± 0.9	1.4 ± 0.8	
Outside Prescriber (%)	30	55	

* Expressed as mean ± SD

[†] CHA₂DS₂-VASc for atrial fibrillation patients only (n=9; n=29)

Table 2. Phone Survey

Anticoagulation Knowledge Tool*		
Drug Name; Indication; Action; Frequency		
Duration on Anticoagulation		
Planned Duration of Therapy; Taking as Prescribed		
Timing of Doses; Missed/Extra Doses; Abruptly Stopping		
NSAID Risk; Other Drug Interactions; Alcohol		
Procedure Notification; Informing Providers		
Most Important Side Effect; 3 Signs to Watch For		
3 Ways to Reduce Side Effects; Overdose		
Basic Demographics; Highest Level of Education		
Additional Survey Questions		
Previous Education; Previous Anticoagulants		
Importance of Follow-up/Monitoring; Adherence		
Survey Results		
60 completed surveys and targeted counseling encounters		
1 patient believed apixaban required INR monitoring		
1 patient taking apixaban as needed (1-2x/week)		
Only 1 of 13 patients on a rivaroxaban dose <a> 15 mg taking with food		
1 patient taking rivaroxaban was avoiding vitamin k intake		
Most expressed appreciation for the chance to learn more		
about their medications		
*Validated Anticoagulant Knowledge Tool ⁵		
Repeat surveys to evaluate effectiveness of pharmacist		

Repeat surveys to evaluate effectiveness of pharmacist education intervention pending

Intervention Identified	Warfarin Users (n= 27)	DOAC Users (n= 61)
Met criteria for clinic visit [n (%)]	9 (33.3)	23 (37.7)
Wrong dose [n (%)]	n/a	5 (8.2)
Poor adherence [n (%)]	2 (7.4)	5 (8.2)
Need for labs [n (%)]	8 (29.6)	21 (34.4)
Scheduled in clinic [n (%)]	0 (0.0)	6 (9.8)

Conclusions

- DOAC users were not as well educated about their medication, particularly as it relates to bleeding and serious drug interactions
- A pharmacist-driven DOAC education and monitoring service may improve utilization of high-risk medications • Given low contact rates, providing service at initiation
- of therapy may be more successful
- Patient education is needed and repeat education may be necessary to achieve scores comparable to warfarin users
- These data may be useful to providers in helping to guide safe prescribing
- Future Directions:
- Repeat knowledge assessments in 3 months (phase 2)
- Implement DOAC consult service accessible to family medicine providers in both inpatient and outpatient setting

Limitations

- Reflects outcomes from a single center
- Low phone contact rates
- Education assessment scores may be subject to voluntary response bias
- Potentially incomplete or inaccurate medical records
- Difficult to intervene and locate records for anticoagulants prescribed by outside providers

Literature Cited

- Shehab N, Lovegrove MC, Geller AI, Rose KO, Weidle NJ, et al. (2016) US Emergency Department Visits for Outpatient Adverse Drug Events, 2013-2014. JAMA. 316: 2115-2125.
- Whitworth MM, Haase KK, Fike DS, Bharadwaj RM, Young RB, MacLaughlin EJ. Utilization and prescribing patterns of direct oral anticoagulants. Int J Gen Med. 2017;10:87-94.
- Mohammad I, Korkis B, Garwood CL. Incorporating comprehensive management of direct oral anticoagulants into anticoagulation clinics. *Pharmacotherapy*. 2017;37(10):1284-1297.
- Kim JJ, Hill HL, Groce JB, Granfortuna JM, Makhlouf TK. Pharmacy student monitoring of direct oral anticoagulants. *J Pharm Pract*. 2018;897190017752713.
- Obamiro KO, Chalmers L, Bereznicki LR. Development and validation of an oral anticoagulant knowledge tool (AKT). PLoS One. 2016;11(6):e0158071.

For Further Information

Please contact *brandi.dahl@ttuhsc.edu* to obtain an electronic version of the poster.

TEXAS TECH UNIVERSITY HEALTH SCIENCES CENTER