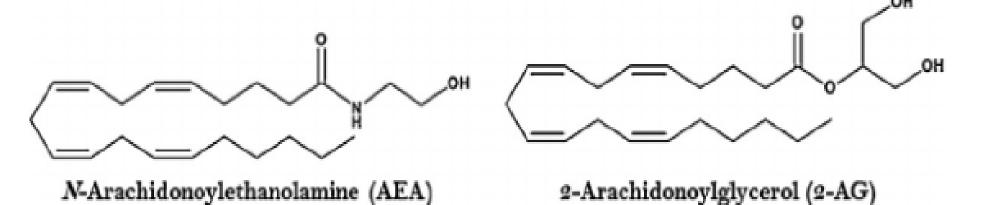


THE EVOLUTIONARY APPROACH TO CANNABINOID RECEPTORS STRUCTURE


Maira Carrillo^c, Iram P. Rodriquez-Sanchez^a, Josee Guindon^b, Marco Ruiz^c, M. Elizabeth Tejero^d, Gene Hubbard^e, Laura E. Martinez-de-Villarreal^a, Hugo A. Barrera Saldaña^f, Edward

TEXAS TECH UNIVERSITY HEALTH SCIENCES CENTER

^aUniversidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Genética, Monterrey, Nuevo León, Mexico. ^bDepartment of Pharmacology and Neurobiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ^cDepartment of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA. ^dLaboratorio de Nutrigenética y Nutrigenética, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., Mexico ^eDepartment of Pathology, University of Texas at San Antonio, San Antonio, TX, USA. ^fUniversidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular, Monterrey, Nuevo León, Mexico ^gSouthwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA. ^hDepartment of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.

INTRODUCTION

The endogenous cannabinoids (ECB) system, is (AEA), anandamide comprised of 2arachdonoylglycerol (2-AG),(Figure 1), endocannabinoid receptors (CNR1 and CNR2) and synthesizing/degrading enzymes. The reports regarding the therapeutic effect of endocannabinoids are sometimes controversial. The reason for this problem might lay in the structural and functional ECB differences in different models and organisms studied.

Figure 1. Endogenous cannabinoids (Fonesca, B.M., et al., 2013)

OBJECTIVE

To evaluate our recently published data on the cDNA composition of ECBs in baboons (Rodriquez-Sanchez et al., 2016) and compare it to known functional and structural variants (from genotype to genotype to phenotype) in humans (*Homo sapiens*) and to described phenotypes in the baboons (*Papio spp*), from phenotype to phenotype.

MATERIALS & METHODS

Tissues (liver) were collected during necropsies from animals undergoing pathological examination at the Southwest National Primate Research Center, Texas Biomedical Research Institute (San Antonio, TX, USA). Total RNA was extracted from the tissue samples using TRIZOL reagent according to the manufacturer's instructions. The sequences obtained were translated using the Transeq online program and aligned with human orthologous human gene [GenBank: CNR1 ID: 1268; CNR2 ID: 1269] using the CLUSTAL W program. Naturally occurring mutations are listed on the Human Gene (HGMD): Mutation Database <u>http://www.hgmd.org</u>. Homology table information gathered from Ensembl database: http://useast.ensembl.org/index.html.

RESULTS

CANNABINOID RECEPTOR 1

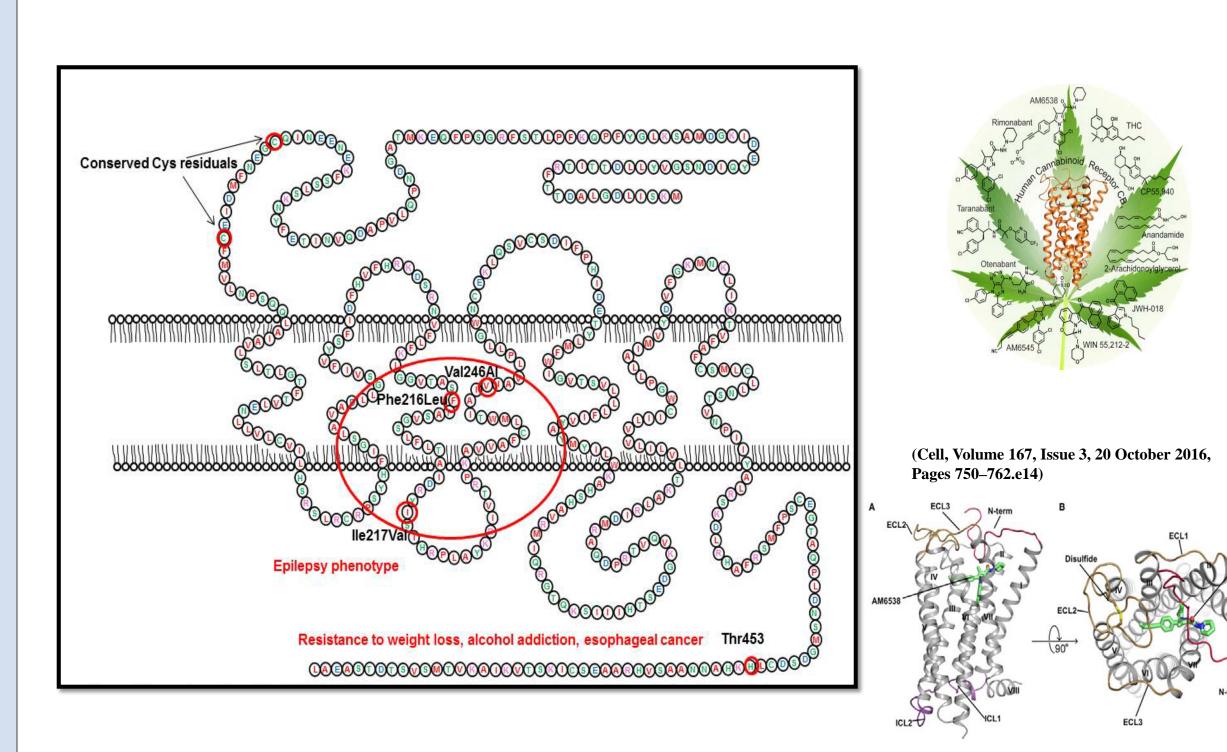


Figure 2. The CNR1 gene homology between humans (Homo sapiens) and baboons (Papio spp.) is 98%, not shown, whereas the protein (CB1R) homology is has 100%. Small Red circles are known gene variants in humans with corresponding phenotypes.

Figure 3. CNR1 Chromosomal location diagram.

CANNABINOID RECEPTOR 2

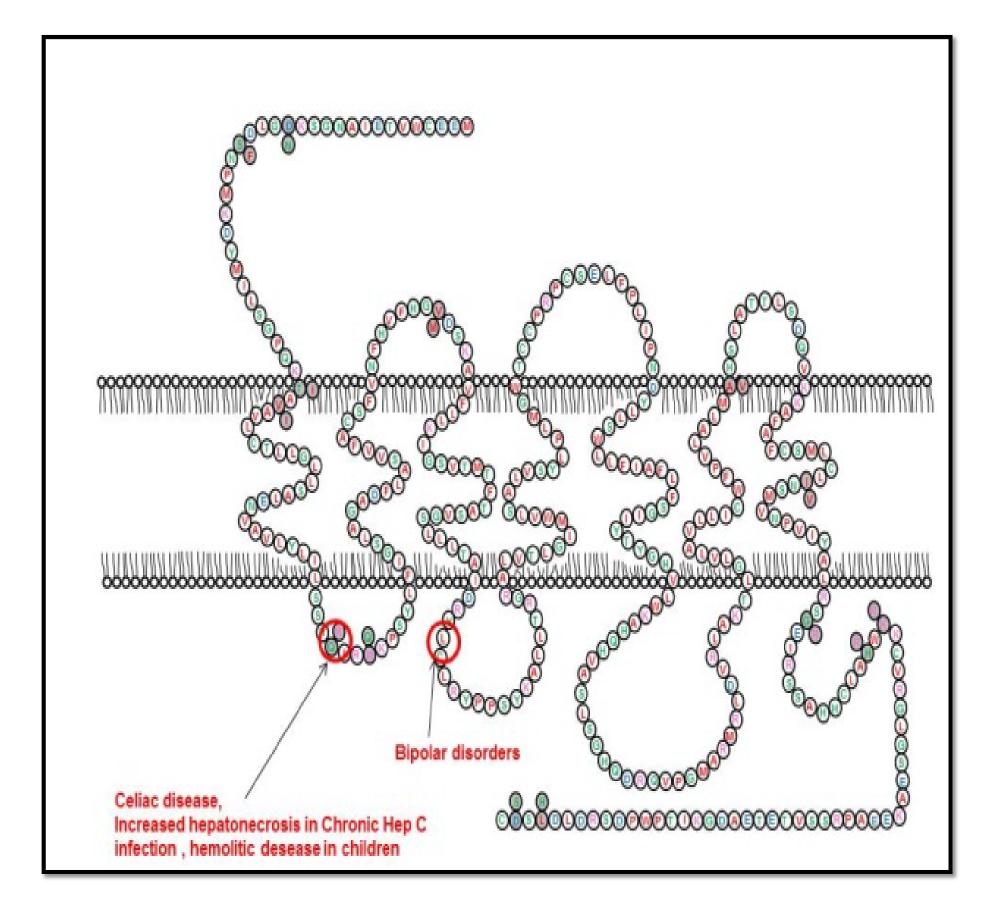


Figure 4. The CRN2 gene homology between humans (Homo sapiens) and baboon (Papio spp.) is 95%, whereas the protein (CB2R) homology is 96%. Red circles are known gene variants in humans with corresponding phenotypes; the amino-acid residues which differ from human are presented in black circles adjacent to the in line amino acid sequence.

Homology % to humans (protein)	Protein change	Location of amino acid change	Known mutations in humans	Known clinical phenotype and/or function	Reference
	-	-3' UTR	4895 C/T (rs806368)	Pre eclampsia Decreased Bone Density	Bienertova- Vasku, J., et al., 201
	-	-	-Allele GG (rs806381), -Allele GG (rs10485170), -Allele GT (rs6454674)	Increased Non-alcoholic Fatty Liver Disease in PCOS patients	Kuliczkowska Plaks J., et al.,2014
	-	-	-Allele GG (rs1049353) '-1359 G/A	-Increased response to SSRI therapy. -Resistance to weight loss	-Mitjans, M., et al., 2 -Jaeger, P., et al., 20
	-T435T -A1359A	_	(rs1049353)	-Lack of metabolic improvement after weight loss with low fat and low carbodyhydrate diet. -Increased Microvascular complications, diabetic nephropathy/retinopathy	-de Luis, D.A., et al. -Antonio de Luis, D. -Buraczynska, M., et
	L133I	_	524C>A (rs41311993)	-associated with bipolar disorder	-Minocci, D., et al., 2011
	-	_	-G1359 A in codón 453	Esophageal cáncer	-Bedoya, F., et al., 2009
	-	_	1359 G/A (rs1049353)	Drug abusing schizophrenia, neuro- psychiatric disorders	-Aberle, J., et al., 20 -Monteleone, P., et a
	-	_	(AAT)12 repeat allele		Ballon, N., et al., 2006
	-	_	AATn>12 repeat	Reduced working memory	Alejandra E. Ruiz-Co 2013
	-	_	14 repeat allele (AAT)	Binging/purging anorexia nervosa	Siegfried, Z., et al.,
	-	_	13 repeat allele (AAT)	Restricting Anorexia nervosa	Ando, T., et al., 2014
	-	3' end	-AATn>10 repeat allele	Increased incidence	Jiang, Y., et al., 2014
	-		-High expression of CB1 receptor	Mantle cell lymphoma	Wasik, A.M., et al., 2014
	-	coding region	-3813A/G (rs1049353)	Obesity	Russo, P., et al., 2007
	-	cytoplasmic tail	1256C>A (A419E, rs1049353)	Signaling and obesity likely associated with protein desensitization	Müller, T.D., et al., 2007
	-	5' UTR	allele A/C (rs754387)	Cannabis and alcohol dependence	Agrawal, A., et al., 2009
	-	5' UTR	-allele A/C (rs78074274) -CC (rs806377) -GG (rs806380)	Increased gaze upon happy faces	Chakrabarti, B., et al
	-	intron 2	-allele AT (rs806379) '-rs1535255	Associated with obesity	Müller, T.D., et al., 2
	-	intron 2	alleleA/G (rs806379	Cannabis dependence	Agrawal, A., et al., 2
	-		rs2023239	Increased risk for polysubstance abuse in European and African-	Agrawal, A., et al., 2
		exon 3		Americans associated with	

Table 1. Table of clinically relevant CNR1 mutations in the human population.

mology % to huma otein)	ns Protein change	Location of amino acid change	Known mutations in humans	Known clinical phenotype and/or function	Reference
	D15N, S19F	First extracellular	524A > C (Leu133Ile)	Bipolar disorder	Minocci, D., et al., 2011
	T34I, V36L	First helical	188-189 GG/GG homozygotes	Autoimmune diseases	Sipe, J.C., et al., 2005
96%	-	First Cellular	Codon 63 QQ variant (rs35761398)	Increased hepatonecrosis in Chronic Hep C infection	Coppola, N., et al., 2014
	-	Fourth transmembrane region	-Non-AA Allele -G allele carriers (rs2501431)	Decreased response to SSRI therapy.	-Onaivi, E.S.,et al., 2008 -Mitjans, M., et al., 2012
	Q63R, R66Q	First Cellular	Codon 63 Q>R rs35761398 (CAA/CGG)	Celiac disease	Rossi, F., et al., 2012
			C/1 and $1/1(rs2501432)$	Protective effect against schizophrenia particularly in males	Tong, D., et al.,2013
	Q63R H316Y	second exon		Risk factor for schizophrenia	Tong, D.,et al., 2013
	-	A/C/T	(rs2229579)	Risk for osteoporosis	Woo, J., et al., 2015
	-	-	AA genotype of (rs3003336 and rs4237)	Lower lumbar spine BMD	Woo, J.H., et al., 2015
	-	-	A>G (rs16828926)	No association in Korean women with BMD	Woo, J.H., et al., 2015
	-	-	allele A/G (rs3123554)	Associated with lower BMI	Ketterer, C., et al., 2014
Table 2. populatio		clinically releva	ant CNR2 mut	ations in the l	human
_	25540 🕨				[23963462 ⊳

LOC107984929

Figure 5. CNR2 Chromosomal location diagram.

L0C105376861 (

Among the members of the ECB family, the CNR1 was the most conserved gene between humans and baboons with 98% homology and 100% protein homology (Figure 2). The CNR2 gene has a homology of 95% with humans and the protein has a 96% homology (Figure 4). The phenotypes, associated with the mutations of the untranslated regions of this gene in humans are not described in the baboons. In contrast, one of the differences in the CNR2 structure was detected in the only clinically known region showing the relevant polymorphism in the human receptor. Phenotypes associated with this polymorphism are not described in the baboons (Figure 4). Clinically relevant mutations in CNR1 and CNR2 are shown in table 1 and 2. A diagram of CNR2 gene is shown in Figure 5.

The presented data provides important information for translational and pharmacological studies of substance of abuse in non-human primate model evolutionary understanding of human and disorders.

thank personnel of the Texas Biomedical Institute and for Pregnancy and Newborn Research (UTHSC-San) for their help. This study was partially supported by Texas lical Research Institute Grant C06 RR013556 and NIH grant 50 to Dr. Peter Nathanielsz (UTHSC—San Antonio), CSA ERC New Investigator Award to N.S.-L., NIH NCRR 251 RR013986 to the Southwest National Primate Research. ork was supported by the TTUHSC start-up funds and CNTN (Translational Neuroscience and Therapeutics) to N.S-L. and AMERSA travel award to M.C.

RESULTS

CONCLUSION

REFERENCE

iguez-Sanchez, I. P., Josee Guindon, Marco Ruiz, Maria E. Tejero, Gene Hubbard, E. Martinez-de-Villarreal, Hugo A. Barrera-Saldaña, Edward J. Dick, Jr. Anthony ommuzzie, Natalia E. Schlabritz-Loutsevitch, 2016. The endocannabinoid system e baboon (Papio spp.) as a complex framework for developmental pharmacology. otoxicology and Teratology

vi, E.S., et al., 2008. Brain neuronal CB2 cannabinoid receptors in drug abuse and ression: from mice to human subjects. PLoS One 3 (2), e1640.

i, F., et al., 2012. The cannabinoid receptor type 2 Q63R variant increases the risk eliac disease: implication for a novel molecular biomarker and future therapeutic vention. Pharmacol. Res. 66 (1), 88–94.

, J.C., et al., 2005. Reduced endocannabinoid immune modulation by a common abinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune ders. J. Leukoc. Biol. 78 (1), 231–238.

ACKNOWLEDGEMENTS