Introduction

Maternal obesity is associated with offspring behavioral and cardiovascular developmental problems through poorly understood mechanisms. Endocannabinoids (eCB) are lipid derivatives, linking metabolism to mental and cardiovascular health (Figure 1). CB1R—a G-protein-coupled receptor—is the main target of endogenous [2-arachidonoylglycerol (2-AG) and N-arachidonoylthanolamine (AEA)] and exogenous cannabinoids (e.g., marijuana). We previously reported a seemingly paradoxical decrease of CB1R ligands’ concentrations (Figure 2), decreased mRNA, but not CB1R protein expression in placentas of obese baboons (increased food consumption model) (Placenta 2013 34(11):983) (Figure 3) and decreased placental protein expression of CB1R and CB2R in obese pregnant women carrying male fetuses (Figure 4) (AJOG, 2014, 210(1):S94).

Figure 1. Endocannabinoid system and the effects on various systems of the body. (F. Xavier Pi-Sunyer, 2008)

Figure 2. Concentrations of AEA and 2AG in placenta, maternal serum and maternal fat of obese (n=4) and non-obese (n=4) pregnant baboons (Placenta 2013 34(11):983).

Figure 3. CB1R protein expression and quantifications (AB) and mRNA expression (C) in placenta of naturally obese (n=4) and non-obese (n=4) baboons. (Placenta 2013 34(11):983).

Figure 4. Placental protein expression of CB1R and CB2R in obese (n=3) and non-obese (n=4) pregnant women carrying male fetuses (A). Quantification and analysis by western blot (B) (AJOG, 2014, 210(1):S94).

Methods

Baboons (Papio spp) were fed a diet of 45% fat (HFD; n=4) while controls (CTR; n=4) ate 12% fat from at least 9 months prior to conception through pregnancy until 0.9 gestation (Placenta 2009 30(9):760). Immunohistochemistry (IHC) was performed on placental tissue of male fetuses from mothers of HFD and control groups (Figure 5.6) using the CB1R monoclonal primary antibody (Immunogenes, Budapest, Hungary), the secondary antibody is included in the Vectastain ABC kit (Vector laboratories; Burlingame, CA); methodology was performed according to manufacturers instructions. The slides were scanned using the NanoZoomer SQ (Hamamatsu; Middlesex, NJ), quantification was performed using ImageScope™ v11.1.2.752 by Aperio (Leica Biosystems; Buffalo Grove, IL).

Figure 5. CB1R proteins expression in placenta of male fetuses in HFD (A) and control (B). Black arrow shows the syncytiotrophoblast, green arrow shows cytotrophoblast (A), and yellow arrow shows endothelium (A, B, and C).

Figure 6. CB1R protein expression (A) and H&E staining (B) in placenta of male fetuses, control group. Black arrow is syncytiotrophoblast, green arrow is cytotrophoblast and yellow arrow endothelium.

Figure 7. Placental CB1R protein expression in HFD (n=4) and non-obese (n=4) dams (A); placental (B) and fetal weights (C).

Conclusion

Availability of the cytoplasmic pool for placental CB1R is regulated by a high fat diet, but not increased food intake in this baboon model of maternal obesity. Decreased placental CB1R availability might alter eCBs regulated fetal vascular reactivity.

References


Acknowledgement

This study was supported by grants from the National Institutes of Health (F. Xavier Pi-Sunyer, 2008; M. Scherzer, 2009; M. Slominski, 2009), and by the National Smoking and Tobacco Control Research Center (F. Xavier Pi-Sunyer, 2009). The authors also gratefully acknowledge Dr. Peter Nathanielis, Dr. Natalia Schlattibiett-Loubnitz, Dr. Cun Li, and Dr. Qingqing Loutsevitch for their help. This study was partially supported by Texas Pregnancy and Life Course Health Center, Texas Biomedical Research Institute, San Antonio, TX, USA; Texas A&M University (Department of Animal Science, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; and the University of California, San Francisco, CA, USA.)