INTRODUCTION

- Optimal placental oxygen transfer is critical for fetal growth
- Placental oxygen transfer and oxygen consumption are determined among other parameters by fetal and maternal flow rates.
- It has been calculated, that in the artificial system of ex vivo placental perfusion the physiological flow rate in 35 g placental tissue would be 12 ml/min.

OBJECTIVE

To estimate fetal oxygen transfer in relation to perfusion flow ratio in dually perfused human placenta

MATERIALS AND METHODS

Three placentas were obtained within one minute after delivery according to the Institutional Review board-approved protocol. Cannulation of the cotyledon and beginning of the perfusion was within 7-10 min after delivery. After initial quality checks and stabilization, the dual perfusion was established with continuous monitoring of the fetal in- and outflow, placental tissue and maternal inflow oxygenation, using sensor array (FisextingO2, Pyo Science, Germany). Fetal-to-maternal leakage was controlled by injection of FITC-conjugated dextran to the fetal circuit. Continuous monitoring of lactate, glucose, pH and temperature was performed. Fetal flow rate was increased from 4.8 ml/min to 12 ml/min in five-seven minute increments. Formula for calculation of oxygen consumption is presented below [1,2,3].

RESULTS

Experimental series A

The fetal and maternal flow rates, fetal-to-maternal flow ratio, arterial and venous O2, and venous-to-arterial O2 ratio measured at various fetal flow rates of dually perfused placenta (n=3). Data are presented as MEAN±S.E.M. (standard error of mean).

<table>
<thead>
<tr>
<th>Flow Rate (ml/min)</th>
<th>Fetal Flow Rate (ml/min)</th>
<th>Maternal Flow Rate (ml/min)</th>
<th>Fetal Flow Ratio</th>
<th>Fetal Arterial O2</th>
<th>Maternal Arterial O2</th>
<th>Venous Arterial O2 Ratio</th>
<th>Fetal Venous Arterial O2 Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>2.8 ± 0.7</td>
<td>0.8 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>98.5 ± 2.3</td>
<td>3.6 ± 0.3</td>
<td>0.2 ± 0.0</td>
<td>0.02 ± 0.0</td>
</tr>
<tr>
<td>5.0</td>
<td>3.6 ± 0.9</td>
<td>1.4 ± 0.2</td>
<td>2.5 ± 0.3</td>
<td>97.8 ± 2.1</td>
<td>3.4 ± 0.2</td>
<td>0.4 ± 0.0</td>
<td>0.03 ± 0.0</td>
</tr>
<tr>
<td>6.0</td>
<td>4.3 ± 1.0</td>
<td>2.2 ± 0.3</td>
<td>5.0 ± 0.4</td>
<td>96.5 ± 1.7</td>
<td>3.2 ± 0.1</td>
<td>0.8 ± 0.0</td>
<td>0.05 ± 0.0</td>
</tr>
<tr>
<td>8.0</td>
<td>5.6 ± 1.5</td>
<td>4.0 ± 0.5</td>
<td>2.5 ± 0.3</td>
<td>94.8 ± 2.1</td>
<td>2.8 ± 0.2</td>
<td>1.0 ± 0.0</td>
<td>0.10 ± 0.0</td>
</tr>
<tr>
<td>10.0</td>
<td>7.2 ± 2.1</td>
<td>6.0 ± 0.6</td>
<td>3.0 ± 0.4</td>
<td>93.5 ± 2.3</td>
<td>2.4 ± 0.2</td>
<td>1.2 ± 0.0</td>
<td>0.12 ± 0.0</td>
</tr>
<tr>
<td>12.0</td>
<td>8.9 ± 2.7</td>
<td>8.0 ± 0.8</td>
<td>4.0 ± 0.4</td>
<td>92.0 ± 2.2</td>
<td>2.0 ± 0.1</td>
<td>1.4 ± 0.0</td>
<td>0.14 ± 0.0</td>
</tr>
</tbody>
</table>

DISCUSSION

In our experiments we increased feto-maternal and fetal flow rates. The increase of the fluid flow rate at flow ratio of 1 resulted in the decrease in the maternal and fetal transport fractions of antipyrine [5]. The comparison of fetal-to-maternal transfer of antipyrine [6] and FITC-conjugated Dextran in our experimental work (Figure 4) showed compatible data at the fetal/maternal flow ratio 0.6-0.9.

Decrease in placental oxygen consumption and increase in feto-maternal transfer of FITC dextran might be due to the fluid shunting between maternal and fetal compartments [6] and therefore inadequate oxygen exchange. The increase flow rates are associated with distention of the peripheral villous tree. The differences in the vascular composition of each cotyledon (SGI posterior # T14, Mumcu et al. 2018) might explain differences in the absolute feto-maternal transfer of FITC dextran with the increased fetal flow and flow rate.

The increase flow ratio is associated with fetal stromal edema (Kaufmann, 1985) – morphological changes, which have been suggested to result in decreased permeability.

CONCLUSIONS

At the ex vivo placental perfusion, the optimal flow rate for oxygen transfer is 4.8 - 6 ml/min.

ACKNOWLEDGEMENT

The authors wish to acknowledge the contribution of the TTUHSC Clinical Research Institute for their assistance with this research. We would like to acknowledge support of the Labor and Delivery personnel and residents/faculty of the OB/GYN Department. Authors would like to thank Dr. Zacharias (Dean of Basic and Biomedical Sciences at UTPB) for the support.

REFERENCES