INTRODUCTION

- The endogenous cannabinoid system (ECS) plays an essential role in human homeostasis. Human cannabinoid receptor 1 (CNR1) gene encodes unique CB1R transcript variants.
- Maternal Nutrient Restriction (MNR) affects offspring development through fetal programming.
- The ECS modulates offspring’s behavioral responses to nutritional stimuli through Temporal Cortex (TC) as a target of exo and endogenous cannabinoids.

OBJECTIVE

To determine the fetal sex-specific nutritional regulation of CB1R and CB1 transcript variants in temporal cortex of a baboon model (Papio spp.) of MNR near term.

MATERIALS & METHODS

RESULTS

DISCUSSION

The only data available to date regarding MNR effects on the offspring’s CB1R expression is available in rodent model (Fig6), authors showed sex-specific behavioral and brain changes. In the female offspring of MNR mothers in non-human primate model low arousal, poor attention, and persistence, and difficulty modulating activities are reported (Figure 7).

CONCLUSIONS

- Endogenous activation of CB1R may serve as a compensatory mechanism for caloric restriction-associated decreased insulin and glucagon concentrations.
- Our data might explain the more variable and lower levels of persistence and attention in the female offspring of nutritionally restricted mothers.

REFERENCES

FALCON RESEARCH & EDUCATIONAL OPPORTUNITIES AWARD. The University of Texas of the Permian Basin.

ACKNOWLEDGEMENTS

Dr. Kushal Gandhi, Dr. Maira Carrillo, Dr. Dr. Raymond Moss Hampton, Regional Chair, Department of Obstetrics and Gynecology at TTUHSC.

Dr. Michael Zavada, Dean of Arts & Sciences, UTPB.

Dr. Peter Nathanielsz, UTHSC—San Antonio, TX.

Endogenous activation of CB1R may serve as a compensatory mechanism for caloric restriction-associated decreased insulin and glucagon concentrations.

ACKNOWLEDGEMENTS

Dr. Kushal Gandhi, Dr. Maira Carrillo, Dr. Raymond Moss Hampton, Regional Chair, Department of Obstetrics and Gynecology at TTUHSC.

Dr. Michael Zavada, Dean of Arts & Sciences, UTPB.

Dr. Peter Nathanielsz, UTHSC—San Antonio, TX.